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Hiram Hernańdez-Loṕez, Socorro Leyva-Ramos,* Cesar Fernando Azael Goḿez-Durań,
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ABSTRACT: Triazoles occupy an important position in medicinal chemistry
because of their various biological activities. The structural features of 1,2,3-
triazoles enable them to act as a bioisostere of different functional groups
such as amide, ester, carboxylic acid, and heterocycle, being capable of
forming hydrogen bonds and π−π interactions or coordinate metal ions with
biological targets. In this work, the synthesis of 1,2,3-triazole derivatives via
copper(I)-catalyzed azide−alkyne cycloaddition (CuAAC) is reported.
Overexpression of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1)
is often found in breast cancer cells. Molecular similarity and docking analysis
were used to evaluate the potential inhibitory activity of 1,2,3-triazoles
synthesized over 17β-HSD1 for the treatment of mammary tumors. Our in
silico analysis shows that compounds 4c, 4d, 4f, 4g, and 4j are good molecular
scaffold candidates as 17β-HSD1 inhibitors.

■ INTRODUCTION

In search of new breast cancer treatment strategies, a few
endocrine therapies have been developed. Hormone therapy is
based on selective estrogen receptor modulators or anti-
estrogens that cause several undesired effects.1,2 The activation
of 17β-estradiol (E2) responsible for the growth of estrogen-
dependent breast cancer is regulated by the enzyme 17β-
HSD1. The inhibition of this enzyme that is expressed in
different organs but mainly in many breast cancer tissues3 is a
better therapy with probably fewer side effects.
For this reason, several steroidal and nonsteroidal inhibitors

of 17β-HSD1 have been developed. However, recently,
nonsteroidal derivatives that act as inhibitors of 17β-HSD1
enzyme, having derivatives of thienopyrimidinones, biphenyl
ethanones, 6-(hydroxyphenyl)naphthols , and bis-
(hydroxyphenyl)azoles, have been researched intensively,
with the last one being the most promising compound.4

Biphenyltriazoles, as a bioisostere of azoles, open possibilities
for evaluating several candidates as new inhibitors of the
enzyme, having a platform with a straightforward methodology
of synthesis that generates a library of compounds via CuAAC
reaction. Besides, in conjunction with the computational study,
it will be possible to evaluate better candidates for enzyme
inhibition with extensive molecular screening.
Many triazole-based derivatives are available as medicines;5

however, they also have a wide range of important applications
in the agrochemical,6 dendrimer,7 supramolecular,8 electro-
chemical,9 corrosion retardant,10 optical brightener,11 metal

chelator,12 and material fields.13 Their important biological
activities include anticancer,14 antitumor,15 anti-HSV-1,16

antimalarial,17 antitubercular,18 antileishmanial,19 antifungal,20

antibacterial,21 antimicrobial,22 antidiabetic,23 antihyperten-
sive,24 anti-inflammatory,25 anti-Alzheimer,26 antiepileptic,27

and anticonvulsant.28

Their importance in the field of medicinal chemistry is due
to high dipole moment, rigidity, and capability to bind with
various kinds of enzymes and receptors via weak interactions
such as hydrogen bonds, coordination bonds, ion−dipole,
dipole−dipole, and cation−π and π stacking interactions when
they bind with the biological target.29 Thus, 1,2,3-triazole
scaffolds are of interest for drug development because these
systems act as a bioisostere of different functional groups such
as amide, ester, carboxylic acid, and heterocycle,30 and they
also are highly stable under basic, acidic, reductive, oxidative,
and enzymatic conditions due to high aromatization.31,32

The 1,2,3-triazole ring system can be easily built via
Huisgen’s 1,3-dipolar cycloaddition of azides and alkynes by
copper-catalyzed click reaction (CuAAC), allowing the
production of a large number of 1,4-disubstituted-1,2,3-
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triazoles in high regioselectivity, broad substrate scope,
favorable kinetic, excellent yield, insensitivity toward oxygen
and water, and pure product isolation. This reaction can be
performed in the presence of a wide variety of functional
groups, facile and gentle conditions, wide pH range tolerance,
and compatibility with a variety of solvents.
The click conjugation includes direct utilization of copper(I)

salts, either added directly or generated by reduction of
copper(II) or oxidation of Cu(0) and copper complexes.33

There are also examples of CuAAC reactions by the
heterogeneous catalyst using materials such as alumina, silica,
polymers, zeolites, or activated carbon as supports.34−36 Other
catalytic systems used are Ru-, Zn-, Ag-, Ni-, Pt-, and Pd-
catalyzed click.37−39 The efficiency of the azide/alkyne click
reaction was improved by the use of microwave irradiation and
ultrasonication.37,40,41

1,2,3-triazole is a building block with many attributes for the
development of new anticancer agents,14 such as an inhibitor
of human methionine aminopeptidase type 2 (hMetAP2),42

inhibition of human cancer cell lines such as breast
adenocarcinoma (MCF-7) and human hepatocellular carcino-
ma (HepG2),43 cytotoxic activity against several cancer cell
lines,44,45 antiproliferative activity,46 and so on.47 To further
enrich the structure−activity relationship of triazole in the
enzyme inhibition, herein, the generation of a diverse library de
triazole analogues using the CuAAC reaction is reported, as
well as their inhibitory potency over 17β-HSD1.
Ten new triazole derivatives have been synthesized with

good yields and evaluated as nonsteroidal inhibitors of 17β-
HS1 for the treatment of estrogen-dependent diseases. The
desired derivatives of triazoles were generated by click reaction
with different functional precursors. Current research efforts
are mainly focused on the optimization of the side chain
attached to the pharmacophore in order to develop new
compounds with better pharmacological activities.

■ RESULTS AND DISCUSSION

Chemistry. Aromatic azides were synthesized by the
formation of benzenediazonium salt from substituted anilines
with sodium nitrite in acid media, and then, sodium azide was
added, having a range from good to excellent yields of reaction
(Figure 1).48,49 Anilines with electron-withdrawing groups
allowed to obtain 94−97% yield of aromatic azide while
electron-donor groups allowed to obtain 80−87% yields. The
change of aniline to aromatic azide was confirmed by the
presence of N3 vibration at 2111 and 2069 cm−1 with very
strong intensity and the absence of primary amine vibration at
3500 and 3300 cm−1.
The formation of the 1,2,3-triazole ring was made by copper-

catalyzed 1,3-dipolar cycloaddition between an aromatic azide

and terminal alkyne having 65−88% yield (Figure 1).48,49 The
nature of functional groups in the aromatic azide was not a
determinant factor for the formation of the triazole ring.50

1,2,3-triazole was confirmed for increasing the number of
vibrations in the aromatic region between 1600 and 1400 cm−1

due to C=C and the absence of N3 vibration.
In 1H NMR, a singlet signal of around 9.3 ppm was observed

for triazoles. This chemical shift at downfield is due to the
magnetic anisotropy effect from triazole itself and the
electronegative effect of the nitrogen atoms attached at the
triazole ring by the electron-withdrawing effect reducing the
valence electron density around the proton. In the same way,
13C NMR showed one signal in the range 148.67−130.37 ppm
corresponding to the carbon of triazole. The substituted
aromatic carbon cannot be distinguished by its decreased peak
height.
All compounds analyzed by mass spectrometry did not show

the molecular ion, and the easy liberation of phenyl acetylene
(m/z = 102.05) resulted in the production of the aromatic
azide,51,52 which can act as a nucleophile or an electrophile
agent at the same time generating azo or hydrazine molecules
by intramolecular cyclization.
On the other hand, in UV−vis spectroscopy, the trans-

formation of substituted anilines to azide and then to triazole
molecule showed a hypsochromic shift. The most character-
istic transitions of the triazolinic ring were π→ π* and η→ π*
at 250−244 and 290 nm, respectively. The displacement of π
→ π* band transition of aromatic is showed as a weak
conjugation with each aromatic ring, changing the space
arrangement to nonplanar rings, and this result is congruent
with optimal conformation by computational calculations
made below.

Computational Details. Ligand Preparation and MEP.
The optimized structures of all the compounds are shown in
Figure S1. All the structures were in a minimum in the
potential energy surface because all the vibrational frequencies
were positive. From Figure 2, it can be observed that all the

Figure 1. Synthesis of the 1,2,3-triazole ring system (4a to 4j).

Figure 2. Template structure used for the MSA. 4l, 4m, and 5a to 5d
are inhibitors of 17β-HSD1.
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compounds possess a planar molecular shape with a hydrogen
bond acceptor in the para position of the phenyl ring 1.
Employing these structures as a starting point, we performed a
molecular docking calculation to evaluate these compounds as
potential inhibitors of 17β-HSD1.
To evaluate how the interaction of these molecules with

their biological receptor may occur (neutral, positive, and
negative electrostatic regions), we obtained the molecular
electrostatic potential mapped over a surface of electronic iso-
density value (0.002 e−/Å3). Also, from these molecular
graphics, we can visualize the shape of the compounds, an
important feature for the protein interaction process. The
molecular electrostatic potential of all the reference molecules
(Figure S2) and our triazole derivatives (Figure S3) is
displayed.
In Figure S2, it can be seen how for all the reference

molecules, their aliphatic part (phenyl rings) is a neutral MEP
zone and that they share a similar molecular shape. Also, we
can observe the negative MEP zones located over the nitrogen
atoms of the triazole ring and the oxygen atoms of the OH
moiety. The positive MEP zones are located over the hydrogen
atom of the OH group, which are important in order to bind
similarly to estradiol.
On the other hand, in our triazole derivatives, the positive

zones of MEP in the corner of the molecules are lacking;
instead they present a positive MEP zone over the hydrogen of
the triazole ring. They possess the same negative MEP zone
over the triazole ring as the reference molecules and the
neutral zone over the phenyl rings. Besides, they possess a
highly similar molecular shape with the reference molecules.
These electronic characteristics of our molecules suggest that
they will interact in the same binding site (lock−key principle)
but with different binding residues. To corroborate this
assumption, a molecular docking study was carried out.
Molecular Docking Analysis. All the compounds were

docked in the catalytic site of 17β-HSD1. In Figures S4 and 4,
the interaction of each compound with 17β-HSD1, according
to the docking calculations, is displayed. All the compounds
bind in the lipophilic pocket near the NADP+ cofactor (Figure
3) by embedding their unsubstituted phenyl ring. This
lipophilic pocket is formed by Gly92, Leu93, Gly94, Ala291,
Phe192, and Val196; it is located after a hydrophilic “bottle
neck” type composed by Ser142, Tyr155, Glu194, and Lys195.

This hydrophilic zone is crucial for the catalytic reaction of the
estradiol, forming two HBs with Ser142 and Tyr 155.
These regions of the catalytic cavity help us to explain the

binding mode of the triazole derivatives because of the planar
and cylindrical shape of our molecules, and the most
hydrophobic part of these molecules (unsubstituted phenyl
ring) fits in a perfectly good manner in the lipophilic pocket;
meanwhile, the triazole ring forms a high number of strong
HBs with the residues of the hydrophilic zone. According to
our docking results, besides the similarity between the triazoles
synthesized by Bey et al.4 and the estradiol, these compounds
bind in the lipophilic pocket with their phenyl group with more
hydrophobic character-forming HB with Gly92. Similarly, all
our triazole derivatives bind in the lipophilic pocket by the
phenyl ring with less electronic density, in our case, the
unsubstituted ring, increasing the hydrophobic interactions
and decreasing the steric repulsions. At the same time, the
triazole ring strongly interacts with 17β-HSD1 by many HBs
with Lys195 (HBs and cation−π interactions), Ser 142, and
Tyr 155.
In Table 1, all the interaction energy values of the triazoles

studied in this work are displayed. According to these results, it
can be noted that two of our compounds (4a and 4e) possess a
more negative interaction energy value (better binding) with
17β-HSD1 than that of the triazoles of Bey et al.,4 and other
two of our compounds (4b and 4i) possess a similar
interaction energy value to that of the reference triazoles
(around −148 kcal/mol). We can explain these results by the
aforementioned energy interaction involved in the two regions
of the catalytic domain. It can be noted that our compounds
with the best interaction energy are those which have an
electron-withdrawing group (halogen or carbonyl group). This
structural feature of these molecules enhances the interaction
by HB with the residues located before the hydrophilic
bottleneck, especially with Arg258.
From this analysis, we can conclude that one of the phenyl

rings must be unsubstituted, and the other needs to have an
electron-withdrawing group to facilitate the binding in the
lipophilic group of the catalytic site and the electrostatic
interactions and HB formation with the residues of the
catalytic hydrophilic zones.

Prediction of IC50 Values. From the results of molecular
docking, a mathematical model was generated for the

Figure 3. Catalytic cavity (pink color) of 17β-HSD1 in a mesh representation with estradiol (yellow sticks). The NADP+ cofactor is displayed in a
sphere representation.
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prediction of the IC50 values of the proposed compounds (4a
to 4j) based on the interaction energies. For the generation of
the mathematical model, the transformation of IC50 to
logarithm was used to normalize the data and resulted in eq
1 (see below).

= − −Elog IC 0.06844 7.0891650 inter (1)

This model has produced high statistical quality (R2 = 93.52,
Q2 = 86.96, s = 0.196), which was obtained by relating
interaction energies and log IC50 (log Y) values (Figure S5).
All the log IC50 (Yexp) experimental, calculated (Ycalc), and

predicted (Ypred) activity values by our model are presented in
Table 2. Also, the absolute value of the differences between
Yexp and both Ycalc and Ypred is represented by errorcalc and
errorpred term, respectively. Yexp versus Ypred activity plots are
shown in Figure S6. The predicted calculation of the IC50
values of the proposed compounds (1 to 10) was realized
using the mathematical model and the interaction energy

values (Table 1). Table 3 shows the predicted IC50 values, and
the values are represented in μM.
The compounds that obtained better IC50 values were the

triazole derivatives 4c, 4d, 4f, 4g, and 4j, with values from 0.33
to 0.57. Comparing these results with the interaction energy
values, the triazole derivatives 4a, 4b, 4e, and 4i showed better
interaction energy values with the 17β-HSD1 protein and
would be expected to obtain better activity (low IC50 values);
however, these compounds predicted high IC50 values. These
results should consider that there is no direct relation between
highly negative interaction energy (binding affinity) and better
IC50 values; the IC50 estimates the effect on the target activity,
which does not necessarily reflect the affinity. The interaction
energy values of the compounds 4c, 4d, 4f, 4g, and 4j are
similar to those of the reference triazoles. From the docking
and mathematical model results, we can conclude that these
triazole derivatives can be used as molecular scaffolds for the
design of new inhibitors of 17β-HSD1.

Figure 4.Molecular docking results of the synthetized triazole derivatives. NADP+ is represented as colored spheres. Hydrogen bonds are displayed
as blue dashed lines.
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■ CONCLUSIONS
In summary, 1,2,3-triazole derivatives were successfully
synthesized through the optimized Cu(I) click conditions.
They were obtained in moderate to high yield and purity
without chromatographic purification. Most of them showed
high activity. Structures of the prepared compounds were
elucidated by spectral data like UV−vis, FT-IR, 1H and 13C
NMR, and MS.
In the molecular docking study, it was observed that triazole

derivatives bind in the lipophilic pocket of the 17β-HSD1
protein by the aromatic ring. The triazole ring has strong
interactions with the protein through hydrogen bonds with
Lys195, Ser142, and Tyr155.
After analyzing the results, we can conclude that to obtain

the best binding affinity with the hydrophilic catalytic zone, an
unsubstituted phenyl ring is necessary to decrease steric
interactions to fit into the pocket, and the other ring must
contain an electron-withdrawing group to enhance HB
interactions. Activity prediction showed that 4c, 4d, 4f, 4g,
and 4j compounds have the best IC50 from 0.33 to 0.57 μM
values. There is not a direct correlation between IC50 values
and binding affinity. Finally, triazole derivatives with the best
IC50 can be used as potential anticancer agents by inhibiting
the protein 17β-HSD1 in breast cancer.

■ METHODS AND MATERIALS
Chemistry. Aromatic azides were obtained from their

amino analogues using the methodology described by Leyva et
al.53 Reagents and solvents were purchased with commercial
suppliers without further purification. The reaction describes
copper-catalyzed Huisgen cycloaddition (Figure 1), where

phenyl acetylene was used as a dipolarophile, and like 1−3
dipole, a series of derivatives of para-substituted aromatic
azides (COOH, CONH2, COOCH3, CN, NO2, Cl, F, CH3,
and OCH3) and a disubstituted aromatic azide (1-azido-4-
bromo-2-methylbenzene) were used. The reaction was carried
out in a mixture of water/dichloromethane (1:1), where
copper sulfate added as the catalyst and sodium ascorbate as
the reducing agent. The progress of the reaction was
monitored by TLC using ethyl acetate/n-hexane (80:20, v/
v). The reaction was left under stirring for 24 h, and the
products were vacuum-filtered and recrystallized with acetoni-
trile.

Computational Details. Molecule Preparation. All the
molecular structures of the compounds in this study were fully
optimized, without symmetry constraints at a semiempirical
level of precision, with the parametric method number 6
(PM6). Finally, to ensure that the geometry of all the
compounds is minima on the potential energy surface, a
harmonic frequency analysis was performed. Furthermore, to
acquire a more precise energy value and electronic density
characteristics, a single-point energy calculation at a density
functional theory level of precision with the B3LYP hybrid
functional54 and the 6-31+G* basis set55 for H, C, N, O, F, S,
and Cl atoms and LACVP pseudopotential and basis set for
the Br atom were employed.56 With these results, the
construction of the electrostatic potential molecular graphics
was accomplished. All the calculations were done in Spartan
18.57,58

Molecular Similarity Analysis. In order to find a possible
application of our synthesized compounds, we employed the
ChEMBL database59 using the biphenyl-triazole scaffold
(Figure 2) as a template for the search of similar compounds
with experimental biological activity. From the molecular
similarity analysis (MSA), we found a series of triazole
derivatives synthesized by Bey et al.,4 which were evaluated as
nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase
type 1 (17β-HSD1) for the treatment of estrogen-dependent
diseases.60 These compounds showed selectivity and a

Table 1. Interaction Energy (kcal/mol) Values of the
Triazole Derivatives

Molecule MolDock score (kcal/mol) Hbond (kcal/mol)

4a −154.93 −7.5
4b −148.98 −11.09
4c −142.18 −7.74
4d −142.85 −6.58
4e −160.25 −10.78
4f −143.89 −5.23
4g −140.84 −7.05
4h −144.34 −4.44
4i −141.05 −3.18
4j −140.44 −13.58
4l −145.92 −6.35
4m −147.12 −7.41
5a −143.29 −1.81
5b −128.11 −7.73
5c −143.29 −5.00
5d −150.28 −3.21

Table 2. Experimental, Calculated, and Predicted log IC50 Values of the Compounds 4l, 4m, and 5a to 5d

molecules log Yexp log Ycalc log Ypred error calc error pred std. err calc std. err pred

4l 3.12 2.90 2.83 −0.23 −0.29 −1.29 −1.64
4m 2.92 3.31 0.39
5a 3.21 3.30 3.35 0.09 0.15 0.59 0.94
5b 1.70 1.68 1.50 −0.02 −0.02 −0.32 −3.13
5c 2.49 2.72 2.77 0.23 0.28 1.29 1.61
5d 3.27 3.20 3.16 −0.07 −0.10 −0.44 −0.64

Table 3. Predicted IC50 (μM) Values for Compounds 4a to
4j

molecules IC50pred (μM)

4a 3.26
4b 1.28
4c 0.44
4d 0.48
4e 7.55
4f 0.57
4g 0.35
4h 0.61
4i 2.56
4j 0.33
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considerable inhibitory potency over 17β-HSD1 (Figure 2).
Also, oxazole and thiazole derivatives with inhibitory activity
over this enzyme were included in this study as a reference.
Molecular Docking Methodology. For the molecular

docking calculations, we used the crystal structures of the
17β-HSD1 cocrystallized with estradiol (PDB:1FDT).61 The
crystal structure for 17β-HSD1 was selected to be in
accordance with the experiments done by Bey et al.4 and
because of the higher structural information of 17β-HSD1
catalytic site besides its crystal resolution value (2.2 Å);
according to the crystal resolution, 6MNE was the better
option, but much structural information was lacking. All water
molecules were removed from the crystal. For the catalytic
cavity calculation (volume of 146.43 Å3), the expanded van der
Waals sphere method was applied (Figure 3).
We employed the optimized geometries of all the

compounds and used three different partial charge schemes:
Mulliken, electrostatic, and Molegro internal scheme. From
this validation process, the electrostatic partial charges,
obtained from the PM6 calculation, were our final option
because of the reproducibility of the crystallographic
conformation of estradiol according to the root-mean-square
deviation value (RMSD = 0.25 Å). As a first step, we
performed a rigid docking of all the compounds with 17β-
HSD1 using as search and scoring function the MolDock
Optimizer and MolDock score [GRID], respectively.
The parameters employed were a 0.2 Å GRID partition and

a 12 Å radius for the search sphere, a total of 30 runs with a
maximum of 2000 iterations and 50 individuals per run.
Finally, a flexible docking calculation was carried out, where all
the residues within 6 Å were set as flexible (18 residues). For
the energy analysis of the ligand, the internal electrostatic
interactions, internal hydrogen bonds, and the sp2−sp2 torsions
were considered. Docking calculations were performed with
Molegro Virtual Docker (MVD) 6.0.56,57
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Universidad Autońoma de San Luis Potosi,́ 78210, Mex́ico;
orcid.org/0000-0001-6303-3107; Phone: +52 444 826

2300 ext. 6476; Email: sleyva@uaslp.mx

Authors
Hiram Hernández-Lo ́pez − Unidad Acadeḿica de Ciencias
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Benítes, A. Azide-enolate 1,3-dipolar cycloaddition in the synthesis
of novel triazole-based miconazole analogues as promising antifungal
agents. Eur. J. Med. Chem. 2016, 112, 60−65.
(21) Zhang, B. Comprehensive review on the anti-bacterial activity
of 1,2,3-triazole hybrids. Eur. J. Med. Chem. 2019, 168, 357−372.
(22) Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R. D.; Tilak, R.;
Awasthi, S. K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked
chalcone and flavone hybrid compounds and evaluation of their
antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 2016, 113,
34−49.
(23) Chinthala, Y.; Thakur, S.; Tirunagari, S.; Chinde, S.; Domatti,
A. K.; Arigari, N. K.; K.V.N.S, S.; Alam, S.; Jonnala, K. K.; Khan, F.;
Tiwari, A.; Grover, P. Synthesis, docking and ADMET studies of
novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur.
J. Med. Chem. 2015, 93, 564−573.
(24) Koteswara Reddy, M.; Kumar, K. S.; Sreenivas, P.;
Krupadanam, G. L. D.; Reddy, K. J. Synthesis of novel 1,4-
disubstituted-1,2,3-triazole semi synthetic analogues of forskolin by
click reaction. Tetrahedron Lett. 2011, 52, 6537−6540.
(25) Assis, S. P. d. O.; Silva, M. T. d.; Silva, F. T. d.; Sant’Anna, M.
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