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Abstract—Sedimentary rocks analysis is useful in
geological science, economic sector, and risk evaluation.
Roundness is a morphological parameter that provide
information to characterize and classify sedimentary
material. Roundness degrees is estimated from the
contour of the particle. Waddell (1932) proposed a
remarkable method based on the measurement of parti-
cle’s curvature. This method is accurate; nevertheless,
it is not invariant to scale and rotation. This problem
can be solved by mapping the contour to the frequency-
domain, however, spectral analysis is a difficult task.
Based on these two approaches, we propose to use
a deep neural network whose input is the elliptical
Fourier spectrum and target is roundness proposed
by Wadell. The training database consists of 623 real-
rocks images from some geological phenomena. We
have found the neural networks perform very well on
the 88.8% of rocks.

I. Introduction

Sedimentary rocks are the most abundant in the Earth’s
crust, covering around 80%. Their study is key to un-
derstanding the geological processes that have occurred
on earth. Sedimentary rocks are very important in the
economy field because they are related to oil, natural
gas, coal, salt, sulfur, potassium, gypsum, limestone, phos-
phate, uranium, among other minerals [1]. Furthermore, in
some cases, they represent a risk for populations settled
near volcanoes or large sediments [2].

Sedimentary rocks are characterized by their physical,
chemical, and mineralogical composition. Physical char-
acteristics are described by three parameters; size, mor-
phology, and fabric (orientation). Accurate measurement
of these parameters enables inferences about the origin,
transport processes, rheological and climatic environment,
and the deposition of the sediment. Size and fabric have
been extensively studied and there are well-established
techniques for measuring them [3]. On the other hand,
morphology is a recent concept, in comparison to the
others and is still in development and search for universal

concepts [4]. Morphology describes the shape of rocks us-
ing contour measurements. Morphology of rocks by three
parameters: form, roundness, and surface texture (rough-
ness). Morphology of rocks consists of three parameters:
form, roundness, and surface texture (roughness). These
three parameters are hierarchical and of different scales,
so one does not affect the other. Form is the highest-
hierarchy feature that is related to the general appear-
ance of the rock. Roundness is an intermediate-hierarchy
feature superimposed on form. The degree of roundness or
angularity is related to the curves and the main corners of
the contour. Roughness or surface texture refers to finer
irregularities overlapping on form and roundness [5]. These
parameters are illustrated in hierarchical order in Fig. 1.

Fig. 1. Hierarchical order proposed by Barret. Features correspond-
ing to irregularities of form, roundness, and surface texture.

Form describes the general appearance of the rock, it
is a coarse sketch of contour. There are some expressions
to measure form, the most used, in the geological field,
is the proposed by Wadell [6] which is obtained from the
relationship between the radius of the circle whose area is
equal to the particle and the radius of the smallest circle
that inscribes the particle. Form is a well-established con-
cept. On the other hand, roundness is a complex concept
that is difficult to estimate. For this reason, we dedicate
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the present work to this parameter. To measure the degree
of roundness, there are two approaches; those based on
curvature [7] and those using frequency analysis [8]. The
curvature-based method defines the degree of roundness as
the ratio of the mean radius of curvature of the corners of
a particle to the radius of the largest circumscribed circle
possible. This method is simple and accurate, however it
is a scale dependent method. The Fourier-based methods
are invariant to scale, rotation and translation, however
analyzing the spectrum is a complicated issue and of high
computational cost [8].

In this work, we propose to use neural networks to
estimate the roundness of sedimentary rocks. The input
variable to the neural network are the range from 3 to 40 of
coefficients a,b,c and d of the elliptical Fourier spectrum.
The Fourier spectrum was chosen as the input variable
because it is invariant to scale, rotation, and translation.
The degree of roundness, calculated with the curvature
method proposed by Wadell [6], was used as the objective
of the neural network. To calculate the roundness, we use
the algorithm developed by Zheng and Hryciw [7]. The
proposed neural network has the following architecture: 6-
layer neural network, the input layer with 148 neurons, the
same size as the input, and Sigmoid activation function; 4
hidden layers with several different quantities of neurons
each, the next layer always have less neurons than the
last one, with Sigmoid activation function; and the output
layer with a single neuron and Sigmoid activation function.
The database to train the neural network contains 623
real-rocks images from some geological phenomena. The
neural network model has a mean squared error of 5E− 3
and a mean error of 1E − 2. The neural network enables
much faster processing. The roundness is estimated at
2800 times faster than the algorithm developed by Zheng
and Hryciw. In addition, the method proposed is invariant
to scale, rotation, and translation. Using a neural network
we have combined the potentialities of the method based
on curvature and frequency analysis.

II. Materials and Methods

In this section, we explain the concepts and mathemati-
cal expressions to estimate the roundness. The input vari-
able to the neural network, elliptical Fourier, is described
too.

A. Roundness
Roundness is a textural characteristic resulting from

various geological processes. Roundness is strongly defined
during transport and deposition of sediments. Collisions,
abrasion, friction, comminution, exposure time, and path-
way are the main processes that determine the roundness
of a particle. The detailed analysis enables inferences
about the type of kinetic and mechanical interaction inter-
particle [9]. Roundness can help discriminate between
reworked and primary deposits, a common problem in

sedimentology. Briefly, the roundness study enables deter-
mines the set of environmental conditions of each sediment
[10].
Roundness is a second-order property which is inde-

pendent of the form and surface texture. The roundness
of a rcok is related to the smoothness (or angularity) of
particles. These variations are expressed in corners and
edges. The roundness of a partile can be estimated by two
approaches: curvature and frequency contour analysis. Fre-
quency analysis is described in section elliptical Fourier.
The curvature approach was proposed Wadell [6]. The
curvature approach consists of finding the most significant
curvatures in the contour. These curvatures are associated
with the angularity of the particle. The smaller radius of
curvature, the greater corner angle. The more significant
curvatures there are, the more angular the contour will be.
An example is shown in Fig. 2.

Fig. 2. Illustration of the method, proposed by Wadell, to measure
the degree of roundness. The circle dotted line corresponds to max-
imum inscribed circle and the circles solid line correspond to main
corners.

The maximum inscribed circle is used to normalize. This
fact is important because the maximum circumscribed cir-
cle can be used to normalize. Thus the degree of roundness
of a corner can be expressed as rn/R, where rn is the
radius of curvature of the corner n and R is the radius of
the maximum circumscribed circle. Wadell [6] expressed
the total roundness of a particle as

Dg =
N−1∑
n=0

rn

R
, (1)

where N is the number of total corners in the contour.
In this way, the range of roundness is between 0 and 1,
being 0 a contour without corners (perfect circle) and 1
a contour with the possible maximum number of corners.
The algorithm works properly, however, the threshold to
identify between corners and non-corners depends on the
scale. An inappropriate value, for this threshold, can lead
to a considerable error.
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B. Elliptic Fourier
Frequency analysis consists in obtaining the Fourier

transform of the contour. In frequency, the three morpho-
logical characteristics are divided into frequency ranges.
The low-frequency range is related to form, the medium-
frequency range to roundness, and the high-frequency to
roughness [8]. However, determining the limits of different
morphological orders is not an easy task. It has been an
unsolvable problem since the method was first proposed.
To date, these limits are obtained empirically, with high
uncertainty.

Because the particle contour is closed, elliptical Fourier
is used. The elliptical Fourier method was proposed by
Kuhl [11] which consists in obtaining the Fourier coeffi-
cients directly from the chain code of the contour. The
chain code approximates the contour by a sequence of lines
consisting of eight directions, Fig. 3.

Fig. 3. Chain code. (a) Directions, (b) closed contour y (c)
chain elements. The dot indicates the chain start whose result is
4442222110070664556.

Chain code can be expressed in two coordinates; x y y
axis, so the elements x and y of the chain are indepen-
dent. The expressions for the Fourier coefficients of the
component x are

an = T

2n2π2

K∑
p=1

∆xp

∆tp
[cos 2nπtp

T
− cos 2nπtp−1

T
], (2)

bn = T

2n2π2

K∑
p=1

∆xp

∆tp
[sin 2nπtp

T
− sin 2nπtp−1

T
], (3)

where, K is the number of pixels of contour, T the
fundamental period, ∆xp incremental change on the x
axis, ∆tp time incremental change. In a similar way, the
coefficients of the component y are calculated by the
following expressions

cn = T

2n2π2

K∑
p=1

∆yp

∆tp
[cos 2nπtp

T
− cos 2nπtp−1

T
], (4)

dn = T

2n2π2

K∑
p=1

∆yp

∆tp
[sin 2nπtp

T
− sin 2nπtp−1

T
], (5)

These four series of coefficients can be expressed by
circular phasors, one for each axis; however, they can be
drawn by a single elliptical phasor, hence its name. The
invariance to scale, rotation, and translation are reached
by normalization and rotation of angle of the first ellipse
to zero, the expressions to achieve this can be consulted in
[11]. The elliptical Fourier is two dependent spectra. De-
pendence complicates the delimitation of frequency ranges
corresponding to form and roundness.

C. Using deep neural networks to determine form and
roundness

A neural network is a type of machine learning which
simulates the human learning mechanism. The neuron is
the basic unit. A neural network contains a large number of
neurons connected to each other. The connection between
the neurons is known as synapse and its strength is
determined by an external stimulus. In the artificial and
biological neural network, the change in synaptic weight
enables learning. The stimulus in artificial neural networks
is provided by the training data containing input-output
pairs of the function to be learned [12]. Neuron should be
activated or not depending on whether it is relevant to
the prediction. The function that performs this process is
known as the activation function. The neural network is
organized in layers. A layer consists of several neurons and
has a specific order in relation to the others. The first layer
receives the input data, the last layer provides the result.
The intermediate layers are called hidden layers [13].

Fig. 4. Typical structure neural network.

A deep neural network consists of calculations carried
out by many layers. Fig. 4 shows a deep neural network
architecture with 4 hidden layers. The nodes of a layer
are connected to the nodes of the previous and next layer.
These types of networks are used to adjust complex models
that requires a more sophisticated estimation [14].
To link curvatures and frequency approaches, we pro-

posed using deep neural networks to estimate the round-
ness of sedimentary rocks. The input variable to the neural
network are the range from 3 to 40 of coefficients a,b,c
and d of the elliptical Fourier spectrum. We chose the
spectrum as the input variable because it is invariant to
scale, rotation, and translation. The degree of roundness
obtained by the radius of the curvature (method described
above) is used as the target value.
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To explain the methodology used, Fig. 5 sketches the
flow diagram of the proposed method.

Fig. 5. Flow-chart of the developed method to measure the roundness
of sedimentary rocks

The database to train and test the deep neural network
was built from 623 images of real rocks. The rocks ana-
lyzed correspond to pyroclastic falls, block and ash flow,
debris avalanche and lahars. The database is available at
https://github.com/Gamalielmch/DNN_roundness.

The architecture used for the neural network is: 6-layer
neural network, the input layer with 148 neurons, the
same size as the input, and Sigmoid activation function; 4
hidden layers with several different quantities of neurons
each, the next layer always have less neurons than the
last one, with Sigmoid activation function; and the output
layer with a single neuron and Sigmoid activation function.

III. Results and Discussion
Results of analysis reveal that the deep neural network

with 6 layers, single input and output layer and twenty
seven hidden layers, is the most appropriate architecture
to measure roundness dregree.

The Sigmoid activation function was chosen for all layers
because the range of our output is in between 0 and 1,
so, even if the Sigmoid suffers with the vanishing gradient
problem, it is perfect because the outputs are defined
when the gradient is more than 0, then, the error can
be propagated properly among the network. Deep neural
network training was performed in Python v3.7.3 using
the Jupyter Notebook v5.7.8 platform, using the keras and
sklearn libraries [15]. The result of the training is shown
in Fig. 6.

As can be seen from Fig. 6, almost all model predictions
simulate the roundness degree properly. The deep neural
network has a mean squared error (MSE) of 5E − 3 and

Fig. 6. Result of deep neural network training

a mean error of 1E − 2. For more detail, the histogram of
absolute difference is shown in Fig. 7. The 82% shows a
difference of less than 0.1 and 51 % of less than 0.05.

Fig. 7. Absolute differences Histogram of the training set. Difference
between the predicted value by the neural network and the roundness
measured by the Zheng and Hryciw algorithm

To test the deep neural network we have reserved a
set of 125 images from the database which were chosen
randomly. Fig. 9 shows the results of estimation for test
set. The MSE is 0.01 and mean error is 0.023.

Fig. 8. Absolute differences Histogram of the test set.

The fitting of the deep neural network is accurate for
82% of cases, since a difference of less than 0.1 is very
acceptable in geological studies. Furthermore, Fig. 8 shows
the 70% of the images below of 0.1 and 88.8% below
of 0.15. This difference is acceptable considering that in
geology rocks are classified into 5 classes. These five classes
have a range of 0.2.

IV. Conclusions
This work describes the implementation of a deep neural

network to estimate the roundness of sedimentary rocks.
We use two approaches, curvature and frequency analysis.
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Fig. 9. Result of deep neural network for test set

The input data are the 3 to 40 coefficients of elliptical
Fourier and the target data are the curvature of the main
corners of the contour. Using these two approaches, we
developed an invariant method to scale, rotation, and
translation. Based on several architectures, it is concluded
that the deep neural network with 6 layers, with several
different quantities of neurons, is the most appropriate to
prediction roundness degree.

The deep neural network was trained and tested using
623 images of real rocks from some geological phenomena.
The fitting of the network shows that 82 % of the training
data have a difference of less than 0.1. On the other
hand, the MSE of the test data was 0.01 and the mean
error was 0.023, a highly acceptable difference in the
geological field. The deep neural network model, proposed
in this manuscript, can be easily used by readers. The
model is freely distributed and available in the repository
https://github.com/Gamalielmch/DNN_roundness.
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