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Background. Immunoglobulins (Ig) are glycoprotein molecules produced by plasma cells in response to antigenic stimuli involved
in various physiological and pathological conditions. Intravenous immunoglobulin (IVIG) is a compound whose composition
corresponds to Ig concentrations in human plasma, predominantly IgG. It is used as a replacement treatment in
immunodeficiencies and as an immunomodulator in inflammatory and autoimmune diseases. The determination of IgG
concentrations is useful in the diagnosis of these immunodeficiencies. Surface-enhanced Raman spectroscopy (SERS) is a
technique that allows protein quantification in a fast and straightforward way. Objective. This study is aimed at determining the
Raman spectrum of IgG at physiological concentrations using quasispherical gold nanoparticles as a SERS substrate. Methods.
We initially determined the Raman spectrum of IVIG at 5%. Subsequently, for SERS’ characterization, decreasing dilutions of
the protein were made by adding deionized water and an equal volume of the 5 nm gold quasispherical nanoparticle colloid. For
each protein concentration, the Raman spectrum was determined using a 10x objective; we focused the 532 and 785 nm laser on
the sample surface, in a range of 500-1800 cm-1, with five acquisitions and an acquisition time of 30 seconds. Results. We
obtained the IVIG spectrum using SERS up to a concentration of 75mg/dl. The Raman bands correspond to aromatic amino
acid side chains and the characteristic beta-sheet structure of IgG. Conclusion. The use of 5 nm quasispherical gold nanoparticles
as a SERS substrate allows for detecting the Raman spectrum of IVIG at physiological concentrations.

1. Introduction

Immunoglobulins (Ig), also known as antibodies, are glyco-
protein molecules produced by plasma cells in response to
antigenic stimuli involved in various physiological and
pathological conditions. The primary function of immuno-
globulins corresponds to the adaptive immune response.
They are subdivided, depending on the structure of the heavy

chains they contain, into several classes: IgM, IgG, IgD, IgA,
and IgE. IgG is also subdivided into IgG1, IgG2, IgG3, IgG4
(decreasing order of abundance), and IgA in IgA1 and
IgA2. IgG is the most abundant, with a plasma concentration
of 700-1600mg/dl, and constitutes 75 to 80% of all Ig. IgA
corresponds to about 15%, with a plasma concentration of
70-400mg/dl, while IgM’s plasma concentration varies from
40 to 230mg/dl. The determination of immunoglobulin
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concentrations is useful in diagnosing immunodeficiencies and
evaluating the response to treatment in these patients [1, 2].

Intravenous immunoglobulin (IVIG) is an immunoglob-
ulin concentrate derived from thousands of healthy donors
(no fewer than 3500). IgG plays a fundamental role in adap-
tive humoral immunity. Therefore, IVIG reflects the donor
population’s collective exposure to the environment and is
expected to contain a repertoire of multiple specific antibod-
ies against a broad spectrum of infectious agents (bacterial
and viral), self-antigens, and anti-idiotype antibodies.

The IVIG composition corresponds to the Ig concentra-
tions in human plasma, mainly IgG, IgA, and traces of other
Ig, cytokines, and soluble receptors.

IVIG is prepared using the Cohn-Oncley fractionation
procedure, precipitating donor plasma with cold ethanol to
enrich the IgG fraction, followed by chromatography purifi-
cation [3]. Commercial products vary concerning the pres-
ence of excipients used to stabilize proteins and prevent
the aggregation of IgG (sugars such as glucose, maltose, D-
sorbitol, or amino acids such as glycine or proline), as well
as the levels of sodium, pH, osmolarity, and the presence
of another Ig [4].

IgG comprises more than 90% of the different commer-
cial IVIG preparations and is the main component required
to observe this drug’s therapeutic effects [5]. IVIG treatment
is aimed at providing sufficient IgG antibodies that passively
neutralize or opsonize a broad spectrum of infectious path-
ogens and trigger the activation of cell-mediated immunity.
The indications for IVIG administration can be classified
according to the mechanism of action and the underlying
disease: replacement therapy in immunodeficiencies, immu-
nomodulatory therapy (in hematological and organ-specific
autoimmune diseases), an anti-inflammatory agent (in
rheumatic, infectious, inflammatory, and neurological
conditions).

Different doses are administered according to the medi-
cal condition being treated. In general, low doses are used
in replacement therapies and higher doses when an immuno-
modulatory or anti-inflammatory effect is required [6].

Raman spectroscopy is a nanocharacterization technique
based on the inelastic dispersion of molecular systems, which
are illuminated with monochromatic radiation; it changes
frequency due to the energy exchange that exists with the
matter [7, 8]. Raman spectroscopy provides information on
the primary, secondary, and tertiary structure of proteins
by identifying associated characteristic bands. By allowing
the structural characterization of proteins, it can detect path-
ological changes in them [9]. The application of the Raman
characterization technique in biomedicine is an advance in
the detection of biomarkers through noninvasive methods;
however, it shows limitations because the signal from various
proteins is weak. Due to this, the technique of surface-
enhanced Raman spectroscopy (SERS) uses nanostructured
surfaces of noble metals such as gold and silver. This tech-
nique allows the standard Raman scattering signal to be
amplified in a factor from 104 to 1016 [10]. It has been used
to diagnose some diseases and identify contaminants and
pathogens, among other applications [8, 10, 11]. It is a non-
destructive characterization technique that can be used in

aqueous media [12]. SERS could be an alternative to the
ELISA test, an immunological assay in which an enzyme is
used as a biomarker [13]. The first protein spectra reported
were the spectra of hemoglobin and cytochrome C in 1972
[14]; later, spectra of other biological molecules were
reported [15].

This study is aimed at determining the Raman spectrum
of IgG (IVIG) using 5nm quasispherical gold nanoparticles
as a SERS substrate.

2. Material and Methods

We purchased intravenous normal human immunoglobulin
5% (Octagam® 5%, Octapharma Pharmazeutika Produk-
tionsgesellschaft, m.b.H. Vienna, Austria). It contains 6 g of
total protein, 95% unmodified IgG, 12 g of maltose, 600μg
of octoxynol (Triton X-100), 120μg of tri-N butyl phosphate
(TNBP), and 120ml of injectable water. The antibody con-
tent is 0.5 IU per g of immunoglobulin. We kept it at a tem-
perature of 4°C until use. The experiments were carried out
at a temperature of 24°C, maintaining a pH in the colloidal
suspension of 5.5 to keep it stable and avoid the protein’s
aggregation. We used deionized water (AE), with a
resistivity ≥ 18:2MΩ;cm-1 at 25°C; and quasispherical gold
nanoparticles (AuNPs), 5 nm in diameter, with a concentra-
tion of 5:5 × 1013 particles/ml, 0.052mg/ml; and citrate coat-
ing (nanoComposix, Inc., San Diego, CA). Characterization
of AuNPs are shown in Supplemental Material Section A.
Raman experiments were conducted in a Horiba Jobin Yvon
XploRA ONE Raman spectrometer coupled to an Olympus
BX41 optical microscope, using a laser source at 532nm
(green) and 785nm (red).

We initially determined the Raman spectrum of IVIG at
5 g/100ml (5%). Subsequently, for SERS’ characterization,
dilutions of the protein were made in the mentioned concen-
tration, adding deionized water and an equal volume of the
nanoparticle colloid, as discussed below. When preparing
the dilutions in this way, all samples have a final concentra-
tion of AuNPs of 0.026 mg/ml, and a total concentration of
IVIG decreasing from 2.5% to 0.075%.

(1) 20μl IVIG 5% + 20μl AE
(2) 20μl IVIG 5% + 20μl AuNP 50nm

(3) 20μl IVIG 5% + 20μl AuNP 5nm

(4) 20μl IVIG 2:5% + 20μl AuNP 5nm

(5) 20μl IVIG 1:25% + 20μl AuNP 5nm

(6) 20μl IVIG 0:62% + 20μl AuNP 5nm

(7) 20μl IVIG 0:31% + 20μl AuNP 5nm

(8) 20μl IVIG 0:15% + 20μl AuNP 5nm

We prepared each of the dilutions and immediately car-
ried out the measurements without requiring additional
incubation time. We placed the mixtures in an aluminum cell
and obtained the SERS spectrum using a 785 nm laser, in a
range of 500-1800 cm-1, with five acquisitions and an
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Figure 1: Characteristic Raman bands of the IVIG.

Table 1: Characteristic Raman bands of IVIG.

Raman shift (cm-1) Proposed band assignment Reference

710
Tyrosine (642, 640-650) [17]

Tryptophan (707)-in IgG- [18]

852

Carbon backbone v (Cα-C, Cα-Cβ y Cα-N) (870-1150) [19]

Glycine, alanine v (CNC) (850-900) assigned to the
symmetric CNC stretch mode

[20]

Tyrosine (852)-in IgG- [21]

Tyrosine (843) v (ring)-in IgG- [18]

Tyrosine out of plane ring bending mode at 853 [22]

Hydrogen bonding state of tyrosine [23]

1001
Phenylalanine (1003, 1000-1010) [17, 23]

Symmetric breathing mode of phenylalanine (1003) [22]

1130
Cysteine (CH bend) (1142) [20]

Glutamine (1122) (NH3 bend and rock modes) [20]

1237

Amide III region (1230-1340) δ (N-H, Cα-H), v (Cα-N) [19]

β-Sheet structure (1239) [24]

β-sheet structure, amide III (1230-1240) [23]

Glutamine (1225) (CH2 bend and twist) [20]

Tryptophan, tyrosine δ (ring) (1225)-in IgG- [18]

Amide III, β-sheet and random coils (1242) [25]

1396

Histidine (1400-1420) [17]

Tryptophan v ring stretching-in IgG-(1366) [21]

Tyrosine v (ring) (1385)-in IgG- [18]

Glycine (1411) CH2 scissor mode [20]

1449

Tryptophan CH2 scissors-in IgG- [21]

Tryptophan or δ (CH2) (1455)-in IgG- [18]

Glutamine (CH2 bend and scissors modes) (1462) [20]

C-H vibration (1449); CH functional groups in amino
acid side chains of proteins

[25]

1497
Glycine (CH2 and OH bending modes) (1495) [20]

Tryptophan, tyrosine v (ring) (1487)-in IgG- [18]

δ: deformation; v: stretching.
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acquisition time of 30 seconds. We focus the laser on the
surface of the sample with a 10x objective.

We calculated the SERS enhancement factor in MatLab
software using the estimation of surface-enhanced Raman
spectroscopy (SERS) enhancement factor [16].

3. Results

It was possible to determine the IVIG spectrum by SERS up
to a protein concentration of 0.075%, using quasispherical
gold nanoparticles at 0.026mg/ml and 785nm laser. The
characteristic Raman bands of the IVIG spectrum obtained
are shown in Figure 1 and described in Table 1.

Signals from different molecules can constitute Raman
bands [26]. In the spectrum, these bands may appear broad-
ened, and therefore, the contribution of various components
cannot be easily recognized, causing this to be misinterpreted
as noise. In SERS, some signals that conform to the band may
be more evident due to the amplification [27].

We perform a spectral truncate in the region of 980 to
1020 cm-1. The band at 1001 cm-1 is consistent in all concen-
trations evaluated and corresponds to the phenylalanine
ring’s C-C bond. It is shown in red in Figure 2.

Using MatLab, we perform the calculation of the
enhancement factor (EF). The values used are listed as fol-
lows: wavenumber (Raman Shift), Raman spectrum, SERS
spectrum, characteristic Raman band (1001 cm-1), the wave-
length of the incident laser (785 nm), molecular weight of the
molecule under test (150 g/mol), the density of the molecule
(0.05 g/cm3), the numerical aperture of the objective
(0.471), and surface area of the molecule under test
(27.7 nm). This calculation results in an EF = 2:3726 × 105
(Supplemental Material Section B).

4. Discussion

The vibrations of the peptide structure in proteins are gener-
ally associated with three main regions in the Raman spec-
trum: (1) the region of carbon backbone (870-1150 cm-1),
comprising the narrowing corresponding to Cα-C, Cα-Cβ,
and Cα-N, (2) the extended amide III region (1230-
1340 cm-1), which mainly involves the interface combination
of the deformation in the NH plane and the narrowing of Cα-
N, as well as a mixture between the deformations of NH and
Cα-H, and (3) the amide I region (1630-1700 cm-1) causes
the C=O narrowing [20]. Aromatic amino acids are the dom-
inant characteristics in the Raman spectrum of peptides and
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Figure 2: Deconvolutions of the IVIG Raman and SERS spectra were performed in the region of 980 to 1020 cm-1. The band at 1001 cm-1,
corresponding to the phenylalanine ring, is shown in red.
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proteins [22]. In fact, in previous work [18, 21], the spectrum
of immunoglobulin G on silver surfaces was represented only
by the side chains of aromatic amino acids; this is probably
because, in the absence of carboxylate bonds, aromatic amino
acids have a higher affinity for the metal surface than nonar-
omatic amino acids. In contrast, under our experimental
conditions and using AuNPs as SERS substrate, it was
possible to obtain Raman bands corresponding to the β-sheet
conformation (1237 cm-1), characteristics of the IgG protein
secondary structure. Using Raman spectroscopy and ampli-
fying the signal with 5 nm gold quasispherical nanoparticles,
it was possible to determine the IVIG spectrum at a concen-
tration of 0.075%, 75mg/dl (normal range in healthy subjects
700-1600mg/dl) [28]. So, it is possible to propose the use of
SERS in the diagnosis of certain immunodeficiencies, for
example, severe hypogammaglobulinemia (a condition in
which IgG levels are less than or equal to 150mg/dl and there
is a lack of antibody response to vaccination), as well as in the
evaluation of treatment after IVIG administration [29].

5. Limitations

This study has several limitations. We are determining the
spectrum of purified IgG in an aqueous solution. For the
SERS technique to be used in clinical laboratories, it will be
necessary for the spectrum to be determined in complex mix-
tures, such as those found in human serum. Another limita-
tion is that when found in serum, IgG could be associated
with other molecules. These interactions may modify the
spectrum of the protein when trying to obtain it in experi-
mental models. This mixture with other molecules could also
interfere with IgG interaction and the metallic nanoparticles
used to amplify the Raman spectrum. Modifying the protein
corona on the nanoparticles will indeed affect the spectrum
obtained. Further research on this topic is required to
consider in the future the application of the SERS technique
in the clinical setting.

6. Conclusion

The use of 5 nm quasispherical gold nanoparticles as a SERS
substrate allows the Raman spectrum of IVIG to be detected
at a concentration ten times lower than normal levels.
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