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Abstract

We introduce an approach for image filtering in a
Bayesian framework. In this case, the probability den-
sity function (pdf) of the likelihood function is approxi-
mated using the concept of non-parametric or kernel es-
timation. The method is complemented using Markov
random fields, for instance the Semi-Huber Markov ran-
dom field (SHMRF), which is used as prior informa-
tion into the Bayesian rule, and the principal objective of it
is to eliminate those effects caused by the excessive smooth-
ness on the reconstruction process of signals which are
rich in discontinuities. Accordingly to the hypothesis
made for the present work, it is assumed a limited knowl-
edge of the noise pdf, so the idea is to use a non-parametric
estimator to estimate such a pdf and then apply the en-
tropy to construct the cost function for the likelihood term.
The previous idea leads to the construction of new Maxi-
mum a posteriori (MAP) robust estimators, and considering
that real systems are always exposed to continuous per-
turbations of unknown nature. Some promising results
have been obtained from two new MAP entropy estima-
tors (MAPEE) for the case of robust image filtering, where
such results have been compared with respect to the classi-
cal median image filter.

1. Introduction

The main objective of this investigation is to propose new
robust algorithms to deal with signal filtering. The data
restoration approaches or recuperation of a signal to its orig-
inal condition given a degraded signal, passes by reverting
the effects caused by noise and some times a distortion func-
tional which must be estimated. One useful idea in Bayesian
estimation is to construct a Maximum a posteriori (MAP)
of the modes or so called estimator of true data by using

Markov random fields (MRF’s) [3], [16]. The evolution of
this idea has caused the development of algorithms which
consider new models of contextual information which is
lead by the MRF’s and the final aim is the restoration of
signals. The idea proposed in this work is based in a robust
scheme which could be adapted to reject outliers, tackling
situations where noise is present in different forms during
the signal acquisition process. In the case of classical MAP
filters, usually the additive Gaussian noise hypothesis is
considered, however in some applications this noise is non-
Gaussian or unknown (with some partial knowledge, that is
the case of some optical metrology experiments which give
at the output signals with speckle noise) [2]. This is a source
of information which imposes a key rule in the signal pro-
cessing context (the contextual or spatial information in two
dimensional signals), that represents the likelihood func-
tion or correlation between data, for example, in the con-
text of image processing the intensity values of a well spec-
ified neighborhood of pixels. Also, the modelling when us-
ing MRF’s takes into account such spatial or data interac-
tion and it was introduced and formalized in [3] where it is
shown the powerfulness of these statistical tools [4], [5], [6],
[16], [22]. The signal modeling in the context of the present
work lead us to assume a limited knowledge about the noise
pdf p(e), (see Eq. (3), where p(e) = p(y|x)), so we pro-
pose to use the data (e) itself to obtain a non-parametric
Entropy Estimate (EE) of the log-likelihood pdf (p̂n,h(e))
[8]. Then the log-likelihood will be optimized together with
a log-MRF to obtain the MAP signal estimation. A vari-
ety of applications in signal processing and instrumentation
are based in statistical modelling analysis. One of the most
used is the linear regression model

y = x⊤θ + e, with e ∼ p(e), (1)

or the multi-variable model in the case of images

yi,j = x⊤i,jθi,j + ei,j , with e ∼ p(e), (2)
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where y represents the response (e.g. observed data, or ac-
quired data), to x explicative variables (e.g. data without
distortions) for i = 1, . . . , N and j = 1, . . . ,M , and a
system response parameterized by θ which is associated to
data (y, x). In some applications θ are functional parameters
which will be estimated by an identification procedure if x
are known, but if θ are known and x are unknown, the esti-
mation is made about x, or the estimation can be made for
both cases (e.g. blind deconvolution). The noise or resid-
uals e variables are independent random processes identi-
cally distributed accordingly to p(e).

The Bayesian formulation is introduced in section 2,
where it is also depicted the log-likelihood approximated
by Entropy estimation. The proposed nonparametric proce-
dure for the Entropy estimation is led by classical kernel
estimators, it will be introduced in section 3. The princi-
pal apport of this work is also explained in section 3, where
two different MAP-Entropy estimators (MAPEE) are pro-
posed and used for the case of image filtering. Section 4
presents a comparison of the MAPEE estimators showing
the performance and the improvement of estimation results
when one takes into account the change of MRF, moreover
the MAPEE estimation is compared with respect to an it-
erative median filtering. Finally, some concluding remarks
are given in section 5.

2. Bayesian filtering and log-likelihood ap-
proximated by EE

The problem of signal estimation (e.g. filtering or restora-
tion) into a Bayesian framework deals with the solution of
an inverse problem, where the estimation process is carried
out in a whole stochastic environment

Maximum A Posteriori (MAP) estimator is given by:

x̂MAP = argmax
x∈X

p(x|y),
= argmax

x∈X
(log p(y|x) + log g(x)) ,

= argmin
x∈X

(− log p(y|x)− log g(x)) ,

(3)

in this case, the estimator is regularized by using a Markov
random field function (MRF) g(x) which model all prior
information as a whole probability distribution, where X is
the set of data x capable to maximize p(x|y) (or minimize
−p(x|y)), and p(y|x) is the likelihood function from the ob-
tained data y given x.

2.1. Markov random fields

The Markov random fields (MRF) can be represented in
a general way by using the following cost function:

g(x) =
1

Z
exp

(
−
∑
c∈C

Vc(x)

)
, (4)

where Z is a normalization constant, C is a set of “cliques”
c or local neighborhoods of pixels, and Vc(x) is a weight-
ing function given over the local group of points c. Gener-
ally, the “cliques” correspond to the sets of neighborhoods
of pixels if ∀s, r ∈ c, s and r are neighbors, and one can
construct a neighborhood system called ∂s; for the 8 clos-
est neighbors ∂s = {r : |s− r| < 2}. The Markov random
fields have the capacity to represent various image sources.

There is a variety of MRF models which depend on the
cost functions also known as potential functions that can be
used. Each potential function characterizes the interactions
between pixels in the same local group [5], [16].

2.2. Likelihood pdf Entropy estimators (EE)

A classical procedure to estimate x when θ is known
(from Eq. (1) and (2)), is based on a cost function or cri-
terion J (x) which varies in function ψ(·) of residuals or
noise e(x), where:

e(x) = y − x⊤θ, (5)

and so

J (x) =
N∑
i=1

M∑
j=1

ψ(ei,j(x)). (6)

This is, for example, the case of the maximum likelihood
(ML) estimator:

x̂ML = argmin
x∈X

− N∑
i=1

M∑
j=1

log p(ei,j(x))

 . (7)

The ML estimator is optimal when all information about the
distribution p(e) is accessible. When the knowledge about
p(e) is imprecise or wrong, the estimator x̂ML is possibly
suboptimal. Moreover, under certain circumstances, in im-
age processing filtering and restoration, it results in an ill-
posed problem or produces excessive noise and also causes
smooth of edges. The regularization of the ML estimator
gives a more effective approach called Maximum A Poste-
riori (MAP) estimator which reduces noise and smoothness
at the same time. Our proposition for a new MAP scheme
is to use both, a Generalized Gaussian MRF introduced by
Bouman and Sauer in [5],[22], and the Semi-Huber propo-
sition in [17], together with one of the three kernel estima-
tors used in [8] to obtain cost functionals or criterions based
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on the entropy of the approximated likelihood function (first
term of Eq. (3)) p̂n,h(e). Thus, − log p(y|x) is built on the
basis of the Entropy of an estimate (EE) version p̂n,h(e)
of the distribution p(e). A first proposition is due to Pron-
zato [20], [21], and [25].

Thus, the approximation is obtained using the classical
kernel estimators which uses the empirical distribution of
the random vector e1(x), . . . , en(x), the next expression de-
note such estimators:

p̂n,h(e) = p̂n,h(e|e1(x), . . . , en(x)) =
1

n

n∑
i=1

Kh (e− ei) .

(8)
This expression assumes the hypothesis that p(e) is sym-
metric, two times differentiable and positive, indeed, it is
assumed that K(·) is a kernel weighted function which sat-
isfies some imposed conditions treated in the work of Masry
[19] and subsequently taken back by Devroye [11]–[14],
Berlinet [1], and Loader [18] in some of their research work.
The bandwidth h = hn is given in function of the sample
size n, this parameter could be considered as a sequence of
positive numbers that must satisfy: hn → 0 and nhn → ∞
when n → ∞. The strong uniform consistency of p̂n,h(e)
and its convergence toward p(e), depend on a convenable
procedure of bandwidth selection. For instance, a simple
and faster procedure to bandwidth selection could be the
technique proposed and developed by Terrell [23], [24]. In
the two dimensional kernel cases the previous idea has been
extended in this work according to the following equation:

p̂n,h(e) = p̂n,h(e|e1,1(x), . . . , en,n(x))

=
1

n2

n∑
k=1

n∑
l=1

Kh (e− ek,l) .
(9)

If the convergence and consistence of p̂n,h(e) is as-
sumed, such that p̂n,h(e) → p(e), then the en-
tropy criterion over p̂n,h(e) can be approximated to
− log p(y|x). The fact that the entropy of any proba-
bility density function is invariant by translation, leads
to consider one practical artifact to build a suitable cri-
terion. An extended criterion p̂n,h(eE) is based on the
residuals or noise extended vector which is given by:
eE = {(e1,1(x), . . . , en,n(x)),−(e1,1(x), . . . , en,n(x))}
and on a suitable choice of h:

Je(x) = HA (p̂n,h(eE)) ≈ − log p(y|x), (10)

where HA(f) = −
∫ An

−An

f(x) log f(x)dx. Finally, if we

assume that the EE is a version of the log-likelihood func-
tion into the MAP estimator, then a fist version of the
MAP-Entropy Estimator (MAPEE) which assumes un-
known noise pdf can be constructed from the fact that
− log p(y|x) can be approximated by the entropy of an es-
timate version p̂n,h(e) of the distribution p(e), that is

HA (p̂n,h(eE)), thus:

x̂MAPEE = argmin
x∈X

{HA (p̂n,h(eE))− log g(x)} . (11)

The selection among different kernel options, permits the
performance improvement of the MAPEE estimators which
could be classified in terms of simplicity and in terms of fil-
tering quality, here we choose the Hilbert kernel which is
shown in next section.

3. Kernel structure and MRFs

The Hilbert kernel estimate is used [15]. The func-
tion Kh(e) = 1/(hd)K(e/h) is considered equivalent to
K(u) = 1/∥u∥d, where the smoothing factor h is canceled
obtaining:

p̂n(e) =
1

n2

n∑
k=1

n∑
l=1

1

∥e− ek,l∥d
. (12)

The Hilbert estimates are viewed as a universally consis-
tent density estimate whose expected performance (L1,L∞,
pointwise) is monotone in n (at least in theory) for all den-
sities. The consistency of this class of estimators is proved
in [13](see theorem 2). The Hilbert density estimate of or-
der k (k > 0) is a redefined subclass that avoids the infi-
nite peaks produced during estimation, in the one dimen-
sional case and using the value of k = 2 the kernel estimate
is given by:

p̂n(e) =

√
4

V 2
d πn(n− 1) log n

∑
1≤i<j≤n

1

Deni,j
, (13)

where Deni,j = ∥e− ei∥2d + ∥e− ej∥2d and Vd is the vol-
ume of the unit ball in Rb. This last expression is also called
Cauchy density estimate, due to its similarity to the multi-
variate Cauchy density, ∥ · ∥ denotes the L2 metric on Rd.
Finally, it is assumed that p̂n(e) → p(e) at least in prob-
ability for almost all e. For a suitable choice of An and
alternatively of hn, or d and k, these estimators could be
“blind asymptotically efficient”. The asymptotic properties
and the strong consistency of the truncated entropy estima-
tors were analyzed in [20], [21], [25]. More over, in recent
works the powerfulness of these nonparametric tools have
been largely used for different signal processing problems
[25]. The MAPEE approach proposed here takes into ac-
count the proved robustness in presence of outliers of the
minimum entropy estimators proposed in [8], [9], [10]. Ob-
taining now the complete cost functional structure for the
x̂MAPEE estimator from the point of view of the MRF, the
log g(x) used is based on: i) a generalized Gaussian MRF
introduced in [5],[22], and ii) a Semi-Huber MRF function
used in [17].
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3.1. Generalized Gaussian MRF (GGMRF)

If one considers to generalize the Gaussian MRF (when
p = q = 2 one has a Gaussian MRF), as proposed by
Bouman [5], where the generalized potential functions can
be limited such as

ρ(∆) = |∆|p , for 1 ≤ p ≤ 2 (14)

obtaining the GGMRF

log g(x) = −λp
∑
s∈S

asx
p
s +

∑
{s,r}∈C

bsr|xs − xr|p
+ct,

(15)
where theoretically as > 0 and bsr > 0, s is the site or pixel
of interest and S is the set of sites into the whole MRF, and
r corresponds to the local neighbors. In practice it is rec-
ommended to take as = 1, since the likelihood term is not
given in terms of quadratic q = 2 functional. In order to re-
lax the convexity problem, the following equation has been
used

log g(x) = −λp
∑
s∈S

asx
2
s +

∑
{s,r}∈C

bsr|xs − xr|p
+ct,

(16)
and from Eq. (3), log p(y|x) is strictly convex and so
x̂MAPEE is continuous in y, and in p. The choice of
the power p is capital, since it constrains the conver-
gence speed of the local or global estimator, and the quality
of the restored image, small values for p allows abrupt dis-
continuities modeling while large values smooth them.

3.2. Semi-Huber MRF function

In order to assure completely the robustness into the edge
preserving image filtering, diminishing at the same time
the convergence speed, the Huber–like norm or semi–Huber
(SH) potential function is proposed as a half-quadratic (HQ)
function. Such functional has been used in one dimensional
robust estimation as described in [7] for the case of non-
linear regression. This proposed function is adjusted in this
work in two dimensions according to the following equa-
tion:

log g(x) = −λ

 ∑
{s,r}∈C

bsrρ1(x)

+ ct, (17)

where

ρ1(x) =
∆2

0

2

(√
1 +

4φ1(x)

∆2
0

− 1

)
, (18)

where ∆0 > 0 and it is a constant value, bsr is a constant
that depends on the distance between the r and s pixels, ct

is a constant term, and φ1(x) = e2 where e = (xs − xr).
The potential function ρ1(x) respect the following condi-
tions

ρ1(x) ≥ 0, ∀x with ρ1(0) = 0,
ψ(x) ≡ ∂ρ1(x)/∂x, exists,
ρ1(x) = ρ1(−x), is symmetric,

w(x) ≡ ψ(x)
2x , exists,

limx→+∞ w(x) = µ, 0 ≤ µ < +∞,
limx→+0 w(x) =M, 0 < M < +∞.

(19)

Notice that there is not necessary a scale parameter and
that the potential function meet all requirements imposed
by conditions (19).

Now, substituting these particular Hilbert kernel 2D esti-
mate p̂n(eE) and log g(x) into the equation (11) one could
obtain two MAPEE estimators given by

x̂MAPEEm = argmin
x∈X

{HA (p̂n(eE))− log g(x)m} ,
(20)

for m = 1, 2, according to the two previous MRFs. The ob-
tained results for the two proposed estimators are favorable
in general in the sense of robustness.

4. Results for noise filtering

Treating the problem of filtering image noise, some es-
timation results were obtained for several images which
were contaminated by Gamma, Beta, Uniform and impul-
sive noise, and there was no other type of distortions (all
θi,j = 1 from eq. (2)). The observation equation for this
case can be written

y = x+ e, where e ∼ G(α, β), e ∼ B(α, β), . . .

Accordingly to this last equation, one can construct the par-
ticular MAPEE estimators as proposed by equation (20)
where the iterated method used to minimize the obtained
criterions was the Levenberg–Marquardt method of MAT-
LAB 2008 running in a computer with CORE i7 processor,
and 4 Gbytes of RAM memory. The first experiment was
made considering Gamma noise where α = 0.5, 1.5, 2.5
and β = 1, 2, 3, and also two factors of amplification of
noise were used σa = 5, 10 (σaG(α, β)). The values of α
and β are given such that the obtained degradation is per-
ceptible and difficult to eliminate, Table 1 shows some filter-
ing results in terms of the peak signal to noise ratio (PSNR)
according to four probed images and considering that these
were contaminated by Gamma noise. Figure 1 also shows
some visual results, comparing the MAPEE estimators with
respect to the classical median filter. One can see from Ta-
ble 1 and figure 1, that the MAPEE estimators performance
is better than median filtering for the case of Gamma noise.
On the other hand, for a fourth experiment, figure 2 shows
some results to remove impulsive noise (salt and pepper)
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α = 1.5, β = 2 PSNR MAPEE1 MAPEE2 Median
Im. synthetic noise 22.2 22.2 22.2
35× 35 filt. 24.4 24.2 24.1
Im. Lena noise 16.3 16.3 16.3
120× 120 filt. 17.8 17.7 17.3

Im. Cameraman noise 16.4 16.4 16.4
256× 256 filt. 18.5 18.5 18.0
Im. Boat noise 16.3 16.3 16.3
512× 512 filt. 18.8 18.7 18.5

Table 1. PSNR (in dB) obtained on evalu-
ating the filtering capacity of the different
MAPEE estimators for Gamma G(α, β) noise,
with σa = 10.

for the case of the Lena image, one can see that the per-
formance is similar to the classical median filter (for this
type of noise the median filtering is optimal). Also, figure 3
shows similar filtering results for another probe image such
as the Cameraman (in both cases, for the kernel estimator it
was chosen k = 2, d = 1, and Vd = 0.7071). On the other
hand, the choice of the different MRF parameters such as p
and ∆0 can help to improve the filtering results.

(a) (b)

(c) (d)

Figure 1. Results for Boat image: (a) de-
scribes the noisy image, for Gamma noise;
(b) filtered image using MAPEE1 (GGMRF)
for p = 1.5; (c) filtered image using MAPEE2

(SHMRF) for ∆0 = 10; and, (d) filtered image
using Median filter.

(a) (b)

(c) (d)

Figure 2. Results for Lena image: (a) de-
scribes the noisy image, for impulsive noise;
(b) filtered image using MAPEE1 (GGMRF)
for p = 1.5; (c) filtered image using MAPEE2

(SHMRF) for ∆0 = 10; and, (d) filtered image
using Median filter.

5. Conclusions

The selection among the different parameter options of
the kernel and MRFs, permits the performance improve-
ment of the MAPEE estimators which could be classified
in terms filtering quality. The obtained results for the two
proposed estimators are favorable in general in the sense of
robustness, and it is compared with respect to classical me-
dian filtering. A general scheme for MAPEE estimators has
been introduced and it was particularized for the case of ro-
bust filtering and it was also used for image segmentation.
For future works it exists the interest to implement proce-
dures of MAPEE estimation into high level programming
that will be characterized into algorithms to be used in DSP
cards, and tasks such as image reconstruction (e.g. deconvo-
lution) and segmentation, also one can change the MRF and
the optimization procedures to decrease the times of com-
putation.
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l’Université de Paris, Vol. 38, No. 3, pp. 3–59, 1994.

Reunión de Otoño de Potencia, 
Electrónica y Computación

ROPEC' 2012 
INTERNACIONAL

Artículo aceptado para ser presentado como ponencial oral 352 ISBN: 978-607-95476-6-0



(a) (b)

(c) (d)

Figure 3. Results for Cameraman image:
(a) describes the noisy image, for impul-
sive noise; (b) filtered image using MAPEE1

(GGMRF) for p = 1.5; (c) filtered image us-
ing MAPEE2 (SHMRF) for ∆0 = 10; and, (d)
filtered image using median filter.
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