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Abstract—In this work we introduce a new approach for 

robust image segmentation.  The idea is to combine two strategies 

within a Bayesian framework. The first one is to use a Markov 

Random Field (MRF), which allows to introduce prior 

information with the purpose of preserve the edges in the image. 

The second strategy comes from the fact that the probability 

density function (pdf) of the likelihood function is non Gaussian 

or unknown, so it should be approximated by an estimated 

version, and for this, it is used the classical non-parametric or 

kernel density estimation. This two strategies together lead us to 

the definition of a new maximum a posteriori (MAP) estimator 

based on the minimization of the entropy of the estimated pdf of 

the likelihood function and the MRF at the same time, named 

MAP entropy estimator (MAPEE). Some experiments were made 

for different kind of images degraded with impulsive noise and 

the segmentation results are very satisfactory and promising. 

 

Index Terms—Robust image segmentation, Markov random 

fields, Bayesian estimation, non-parametric density estimation, 

entropy minimization. 

 

I.  INTRODUCTION 

egmentation is one of the most important tasks in 

image processing, it is considered the first step in object 

recognition, scene and image understanding. Some of its 

applications comprise industrial quality control, medicine, 

robot navigation, geophysical exploration, military 

applications, agriculture, among others. Nevertheless, digital 

images are usually affected by some degrading factors as 

blurring or noise coming from image acquisition systems, 

resulting in degraded or distorted images of the real world and 

producing, as a consequence, inadequate segmentation results. 

A degradation process can be described as a degradation 

function   that, together with an additive noise term  , it 

operates on an input image   and produces a degraded image 

 , it means 

                                                

 

Fig. 1 illustrates this process. 

An approach that have helped significantly to solve the 

problem of segmentation of degraded images is the use of 

Markov random fields (MRF) within a Bayesian framework 

[1-9]. This is because MRFs enables posing this problem, and 

many others in image processing, as statistical estimation 
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problems [7] where the solution is going to be estimated from 

the degraded image. The basic premise is that neighborhood 

pixels are expected to have similar characteristics [8,10]. 

Usually, information data (input image) is not enough for 

an accurate estimation of the original image, so the 

regularization of the problem is necessary. This means that a 

priori information or assumptions about the structure of   

need to be introduced in the estimation process [11]. The a 

priori knowledge is given in terms of a probability 

distribution. This distribution, together with a probabilistic 

description of the noise that corrupts the observations, allows 

the use of Bayes theory to compute the posterior distribution 

which represents the likelihood of a solution   given the 

observations   [10,12]. 

 

 
 

Fig. 1.  Degradation process of an image. 

 

The basic idea in Bayesian estimation is to construct a 

Maximum A Posteriori (MAP) by using MRFs. In the case of 

classical MAP filters, usually the additive Gaussian noise is 

considered, however in some applications this noise is non-

Gaussian or unknown [13]. This becomes in a new source of 

information which imposes additional constraints in the image 

processing context (the spatial information) that represents the 

likelihood function or correlation between the intensity values 

of a well specified neighborhood of pixels. 

The Bayes rule states that: 

 

       
          

    
                             

 

where      corresponds to a probabilistic description of the 

real world or its properties, that we are trying to estimate, 

before collecting data;        is a description of the behavior 

of noise or stochastic characteristics that relate the original 

state   to the sampled input image or sensor values  ;        
is a probabilistic description of the current estimation of the 
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original scene  , given the observed data   [14];      is the 

density function of   and is constant if the observed image is 

provided [10,15]. 

The MAP estimator is defined by: 

 

             
   

         

(3)         
   

                    

        
   

                      

 

where      is a MRF function that models as a probability 

distribution the prior information of the phenomena to be 

estimated,   is the set of pixels capable to maximize        
and        is the likelihood function from   given   [16]. 

In a previous work [10] it was introduced a new MRF 

model, named semi-Huber. There, it was demonstrated the 

advantages related to the model simplicity and the minor 

number of parameters to be tuned. In the present work we take 

as a starting point the use of the above mentioned MRF in the 

second term of (3). In that sense, the new approach of entropy 

estimation is going to be present in the variation of the first 

term of that expression. In [10], the first term in the MAP 

estimator was defined as a quadratic function of the 

differences between real and observed data, because of the 

additive noise regarded was Gaussian. For the experiments 

performed here, we considered a more degrading kind of 

noise, namely impulsive noise (salt & pepper) which does not 

follow a specific pattern. Actually, the main idea is to have a 

model that can be adapted to any kind of noise. 

Thus, modeling in this new context lead us to assume a 

limited knowledge about the image noise pdf, so we propose 

to use the data itself to obtain a non-parametric Entropy 

Estimate (EE) of the log-likelihood pdf [17-19]. Then the log-

likelihood will be optimized together with a log-MRF to 

obtain the MAP image segmentation. The rest of the paper is 

as follows: section II describes the definition of the 

approximation of the log-likelihood function by entropy 

estimation. Section III gives a brief background about the 

kernel structure for the density estimation function. The 

complete definition of the new MAP entropy estimator is 

presented in section IV. Some experiments and results are 

presented and discussed in section V, and in section VI some 

concluding comments are given. 

II.  LOG-LIKELIHOOD APPROXIMATED BY EE. 

A.  The general problem of regression. 

A wide variety of applications in signal processing and 

instrumentation are based on statistical modeling analysis. The 

linear regression model is one of the most used 

 

         
                                       

 

where   represents the response to   explicative variables for 

                   , and to a system parameterized 

by  , a set of functional parameters associated to the data 

     , which will be estimated by an identification procedure. 

The   variables are the errors, that model the system as a set of 

random processes which are independent and identically 

distributed accordingly to     . 

A natural extension of the linear regression model is the 

non-linear regression model, but now it is based on a 

parameterized function      
 

                                                  

 

This function is nonlinear with respect to the parameters, and 

its use is also considered because it has been shown in a large 

variety of signal processing and control applications that the 

modeling when using nonlinear functions could be more 

realistic. The perturbations affecting the analyzed system are 

also modeled as stochastic processes [19]. 

There exist some classical techniques for the estimation of 

θ, for example Least Squares (LS), Maximum Likelihood 

(ML), among others. In this work it is proposed a MAP 

estimation based on the entropy minimization of an estimated 

version of the density of the errors (         . 

B.  Likelihood pdf entropy estimators (EE). 

A classical procedure to estimate   when   is known, is 

based in a cost function or criterion      which varies in 

function      of the residuals or noise     , where 

 

                                                  
 

Thus, 
 

                  

 

   

 

   

                      

 

This is the case, for example, of the maximum likelihood 

(ML) estimator: 
 

           
   

                 

 

   

 

   

              

 

For an optimal performance, this estimator requires that all 

the information about the distribution      is accessible. 

When the knowledge about      is imprecise or wrong, the 

estimator      is possibly suboptimal [18, 19]. Moreover, 

under certain circumstances, in image processing, it results in 

an ill-posed problem or produces excessive noise and also 

causes smooth of edges. The regularization of the ML 

estimator provides a more effective approach, the Maximum A 

Posteriori (MAP) estimator, which reduces noise and 

smoothness at the same time. 

Our proposition for a new MAP scheme is to use the semi-

Huber MRF introduced in [10], together with a kernel 

estimator taken from [17-19] to obtain cost functions or 

criterions based on the entropy of the approximated likelihood 

function          (first term of (3)). Thus,            is built 

on the basis of the entropy of an estimated version          of 

the distribution     . A first proposition is due to Pronzato 
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and Thierry [20-22], where the approximation is obtained 

using the classical kernel estimators which uses the empirical 

distribution of the random vector                     as it is 

shown in the next expression: 

 

                                    

 
 

  
             

 

   

 

   

                    

 

     is a kernel weighted function which satisfies some 

imposed conditions treated in the work of Masry [23] and 

subsequently taken back by Devroye [24-27], Berlinet [28], 

and Loader [29] in some of their research work. The 

bandwidth      is given in function of the sample size and 

can be considered as a sequence of positive numbers that must 

satisfy      and        when      The strong 

uniform consistency of          and its convergence toward 

    , depend on a convenient procedure of bandwidth 

selection [18]. A simple and faster procedure is the technique 

proposed and developed by Terrell [30, 31]. 

Assuming that          converges and is consistent, such 

that              , then the entropy criterion over          

can be approximated to           . The fact that the entropy 

of any probability density function is invariant by translation, 

leads to consider one practical artifact to build an extended 

criterion based on the residuals or noise extended vector, 

given by: 

 

                                                

 

and on a suitable choice of  : 

 

                                                   

 

where 
 

            
  

   

                                    

 

then a fist version of the MAP Entropy Estimator (MAPEE) 

assuming unknown noise pdf, can be constructed from the fact 

that            can be approximated by the entropy of an 

estimated version          of the distribution     ,  thus: 
 

              
   

                                   

 

III.  THE KERNEL STRUCTURE. 

A function of the form      is assumed as a fixed kernel 

                  , where    , is a parameter called 

the kernel bandwidth. The fundamental problem in kernel 

density estimation lies in both the selection of an appropriate 

value for   and the selection of the kernel structure. Taking as 

a reference the works [17-19], the Hilbert kernels [26] was 

selected here, this is because of the results presented in the 

referred papers and mainly because of their structure is such 

that they avoid the bandwidth selection and their performance 

depend on other parameters, which selection is very easy. 

A.  The Hilbert kernel. 

The                   , with    , is considered 

equivalent to            , where the smoothing factor   

is canceled, obtaining: 
 

       
 

  
  

 

        
 

 

   

 

   

                       

 

The consistency of this class of estimators is proved in [26]. 

The Hilbert density estimate of order         is a redefined 

subclass that avoids the infinite peaks produced during 

estimation; in one dimensional case and using the value of 

    the kernel estimate is given by: 

 

        
 

  
            

 
 

      
       

             

 

where              
         

  
,    is the volume of 

the unit ball in    and       denotes the    metric on    . 
Finally, it is assumed that             at least in probability 

for almost all  . For a suitable choice of        , this 

estimator could be “blind asymptotically efficient”. 
 

IV.  THE MAP ENTROPY ESTIMATOR (MAPEE). 

In this section it is obtained the complete cost function 

structure for the named         estimator derived from (3). 

The first term has been already described in sections II and III, 

corresponding to the new approach proposed here. The second 

term of (3),         , is based on a potential function, 

named semi-Huber MRF, introduced in [10, 32]. 

The Hammersley-Clifford theorem establishes that MRF 

are equivalent to Gibbs random fields [1,15, 33, 34]. A Gibbs 

distribution has the form: 
 

     
 

 
     

 

 
                                  

 

where   is named the partition function and in practice is a 

normalization constant value.   is the temperature parameter, 

that controls the sharpness of the distribution [1] and in 

practice is assumed to take the value of 1 [33].      is the 

energy function, given by: 
 

            

   

                                   

 

and determined as a sum of clique potentials       over all 

possible cliques   of the neighborhood [6, 15, 33]. These 

clique potentials are given in terms of the difference of the 

intensity values of neighboring pixels and have the general 
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form            , which act on pairs of sites and   is a 

constant that scales the difference between pixel values [10]. 

For the experiments presented here, the eight closest neighbors 

were considered. 

Within this framework, the Huber-like norm or semi-Huber 

potential function, for the two dimensional case, is given by: 
 

                    

       

                      

 

where   is the site or pixel of interest,   corresponds to the 

local neighbors,     is a constant that depends on the distance 

between pixels   and  , c is a constant term and 
 

      
  
 

 
    

        
 

  
                     

 

A graphical representation of the behavior of the semi-

Huber potential function is displayed in Fig. 2, where it can be 

seen that near zero the function is quadratic and with 

increasing of the differences, the function becomes practically 

linear. The linear region allows to preserve sharp edges, while 

convexity makes MAP estimate efficient to compute [10]. 

Now, substituting the particular expression (18) for 

         into (13), it can be obtained the complete form of the 

MAP entropy estimator for image segmentation degraded with 

non-Gaussian noise: 

 

              
   

                         
       

         

 

 
Fig. 2. Graphical representation of the semi-Huber cost function. 

V.  EXPERIMENTS AND RESULTS. 

In order to evaluate the performance of the new proposed 

approach of MAP entropy estimation applied to image 

segmentation, we present a set of experiments with some 

images, Fig. 3 shows the set of test images used. The first one 

is a synthetic image, with which we can make error measures 

and misclassified pixels count; The second one is an attempt 

to apply this new approach to medical imaging, and the third 

one is for the case of geographical imaging. 

All the experiments was performed on a Mac Pro computer 

with a 2 × 2.8 GHz quad-core Intel Xeon processor and 2 GB 

at 800 MHz DDR2 RAM. The minimization process was 

made using the Levenberg-Marquardt algorithm provided in 

the optimization toolbox of MATLAB R2009a, where we 

needed to provide the initial value    to start the search of the 

solution. The three images were degraded with impulsive 

noise: imnoise (X, 'salt & pepper', 0.15), and the aim is to 

obtain the segmentation of the image in spite of the noise 

present. 
 

 
Fig. 3. Set of test images: (a) synthetic image, (b) MR image, (c) 

geographical image of a dam. 

 

A first experiment was carried out with the synthetic image 

trying to separate as accurately as possible the three regions. 

Fig. 4 shows the segmentation results from the noisy image for 

parameter values     and     , with an initial value of 

     . Fig. 4(a) shows the image degraded with impulsive 

noise, as described in the previous paragraph, Fig. 4(b) shows 

the segmented image, Fig. 4(c) shows the difference: original 

image minus segmented image (X - Xs) and Fig. 4 (d) shows 

the difference: segmented image minus original image (Xs - 

X). This figures permit to count the number of misclassified 

pixels, obviously what we expect here is black images.  

Table I includes information about times of computation, 

number of misclassified pixels (n) and error measures, namely 

the relative squared error (RSE) and the relative absolute error 

(RAE). These numerical results are compared with those 

obtained applying the segmentation process without 

considering the new approach of MAP entropy estimation for 

the log-likelihood function; this means, assuming Gaussian 

noise for the first term of the MAP estimator (3). Specifically, 

from [10]: 
 

            
   

         
 

   

           

       

         

 

 
 

Fig. 4. Segmentation of the synthetic image applying MAP entropy 

estimation: (a) noisy image, (b) segmented image, (c)-(d) differences 

from original (X) and segmented images (Xs). 

 

Reunión de Otoño de Potencia, 
Electrónica y Computación

ROPEC' 2012 
INTERNACIONAL

Artículo aceptado para ser presentado como ponencial oral 390 ISBN: 978-607-95476-6-0



 

Fig. 5 shows the segmentation results of the synthetic 

image under the Gaussian assumption. It can be seen that 

visual results are not so good having impulsive noise present 

in the image. Numerical results also confirm the improvement 

produced with the new approach. 
 

 
 

Fig. 5. Segmentation of the synthetic image with      , (a) noisy 

image, (b) segmented image, (c)-(d) differences from original (X) and 

segmented images (Xs). 

 

TABLE I 
NUMERICAL RESULTS FOR THE SEGMENTATION OF SYNTHETIC IMAGE 

       Time (s) n RSE RAE 

MAPEE 90 2 21.4438 58 0.1179 0.1374 

MAP 110 60 12.4741 84 0.1216 0.3388 
 

By using the new approach of entropy estimation, time of 

computation increases, but in return the errors are reduced 

significantly. The values of           are different because 

they have to be adjusted in order to obtain the best result. With 

the same parameter values for MAP as in MAPEE the results 

obtained were disastrous. 

For a second experiment we used a generic image of the 

brain, trying to separate three tissues: gray matter, white 

matter and cerebrospinal fluid (CSF). Fig. 6 shows the 

segmentation results obtained from the noisy image with both, 

MAP entropy estimation (20) and Gaussian assumption (21). 

Table II contains information about parameter values and 

times of computation. 
 

 
Fig. 6. Segmentation of an image of the brain: (a) image degraded by 

impulsive noise, (b) segmented image using MAPEE, (c) segmented 

image using MAP. 

 
TABLE II 

NUMERICAL RESULTS FOR THE SEGMENTATION OF BRAIN IMAGE 

       Time (s) 

MAPEE 90 110 457.9916 

MAP 90 110 333.7739 

 
Fig. 7. Segmentation of a geographical image of a dam: (a) original 

image, (b) image degraded by impulsive noise, (c) segmented image 

using MAPEE, (d) segmented image using MAP. 

 

It can be seen from Fig. 6 that the MAPEE produces a 

better result than MAP. In the black background the MAP 

result presents more and bigger gray spots, and in the part of 

white matter of the brain it can be seen also the same effect. 

A third and last experiment was made with a geographical 

image of a dam named Paso de las Piedras, located in 

Argentina, taken from Google Earth. For this image the 

interest is on the segmentation of the water region, excluding 

all other elements. Figure 7 shows segmented images applying 

both approaches and Table III presents information about the 

realization of these two processes. 
 

TABLE III 

NUMERICAL RESULTS FOR THE SEGMENTATION OF GEOGRAPHICAL IMAGE 

       Time (s) 

MAPEE 100 130 957.1709 

MAP 100 130 725.4942 
 

As in the previous experiment, it is visually perceptible that 

MAPEE improves the segmentation result, for the case of 

impulsive noise, with respect to the previous approach of 

Gaussian noise assumption (MAP). 

VI.  CONCLUSIONS. 

A new approach for image segmentation was proposed 

where one can, not only consider Gaussian noise, but also 

other kind of degradation factors. In this case it was used 

impulsive noise that is one of the most degrading and difficult 

to deal with. It was proved that this new approach produces 

very good results in the sense of robustness, adapting to the 

nature of the degradation present in the images. We are 

working in the improvement of this new proposal by adding 

additional filtering to enhance the final result. 
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