
 

Abstract—We introduce a new approach for robust image 

segmentation combining two strategies within a Bayesian 

framework. The first one is to use a Markov random field (MRF) 

which allows to introduce prior information with the purpose of 

image edges preservation. The second strategy comes from the 

fact that the probability density function (pdf) of the likelihood 

function is non-Gaussian or unknown, so it should be 

approximated by an estimated version, which is obtained by 

using the classical non-parametric or kernel density estimation. 

This lead us to the definition of a new maximum a posteriori 

(MAP) estimator based on the minimization of the entropy of the 

estimated pdf of the likelihood function and the MRF at the same 

time, named MAP entropy estimator (MAPEE). Some 

experiments were made for different kind of images degraded 

with impulsive noise (salt & pepper) and the segmentation results 

are very satisfactory and promising. 
 

Index Terms—Robust image segmentation, Markov random 

fields, Bayesian estimation, non-parametric density estimation, 

entropy minimization. 
 

1. INTRODUCTION 

Image segmentation is one of the most important tasks in 

image processing. Nevertheless, digital images are usually 

degraded by blurring or noise, resulting in degraded or 

distorted images and producing, as a consequence, inadequate 

segmentation results. A degradation process, Fig. 1, can be 

described as a degradation function   that, together with an 

additive noise term  , it operates on an input image   and 

produces a degraded image  , it means 
 

                                                
 

An approach that have helped significantly to solve the 

problem of segmentation of degraded images is the use of 

Markov random fields (MRF) within a Bayesian framework 

[1-5]. This is because MRFs enables posing this problem, and 

many others in image processing, as statistical estimation 

problems [4] where the solution is going to be estimated from 

the degraded image. The basic premise is that neighborhood 

pixels are expected to have similar characteristics [5, 6]. 

Usually, information provided by the input image is not 

enough for an accurate estimation of the original image, so a 

priori information (assumptions about the structure of  ) need 

to be introduced in the estimation process [7]. The a priori 

knowledge is given in terms of a probability distribution, that 

together with a probabilistic description of the noise that 

corrupts the observations, allows the use of Bayes theory to 

compute the posterior distribution which represents the 

likelihood of a solution   given the observations   [6, 8]. 
 

 
 

Fig. 1.  Degradation process of an image. 

 

The basic idea in Bayesian estimation is to construct a 

Maximum A Posteriori (MAP) by using MRFs. In the case of 

classical MAP filters, usually the additive Gaussian noise is 

considered, however in some applications this noise is non-

Gaussian or unknown [9]. This becomes in a new source of 

information which imposes additional constraints in the image 

processing context (the spatial information) that represents the 

likelihood function or correlation between the intensity values 

of a well specified neighborhood of pixels. 

The Bayes rule states that: 
 

       
          

    
                             

 

where      corresponds to a probabilistic description of the 

real world, that we are trying to estimate, before collecting 

data;        is a description of the behavior of noise that 

relates the original state   to the sampled input image or 

sensor values  ;        is a probabilistic description of the 

current estimation of the original scene  , given the observed 

data   [10];      is the density function of   and is constant if 

the observed image is provided [6, 11]. 

The MAP estimator is defined by: 
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where      is a MRF function that models, as a probability 

distribution, the prior information of the phenomenon to be 

estimated,   is the set of pixels capable to maximize        
and        is the likelihood function from   given   [12]. 

In this work we take as a starting point the use of a recent 

MRF model, named semi-Huber [6], in the second term of 

equation (3), because of its simplicity and minor number of 

parameters. The new approach of entropy estimation is going 

to be present in the variation of the first term of that 

expression. In [6], as in some other works [1, 2, 12], the first 

term in the MAP estimator was defined as a quadratic function 

of the differences between real and observed data, because of 

the additive noise regarded was Gaussian. For the experiments 

performed here, it is considered impulsive noise (salt & 

pepper) which does not follow a specific pattern and is a more 

degrading kind of noise. 

Modeling in this new context lead us to assume a limited 

knowledge about the image noise pdf, so it is proposed to use 

the data itself to obtain a non-parametric Entropy Estimate 

(EE) of the log-likelihood pdf [13-15]. Then it will be 

optimized together with the log-MRF to obtain the MAP 

image segmentation. The rest of the paper is as follows: 

section 2 describes the definition of the approximation of the 

log-likelihood function by entropy estimation. Section 3 gives 

a brief background about the kernel structure for the density 

estimation function and the complete definition of the new 

MAP entropy estimator is deduced. In section 4 some 

experiments and results are presented and discussed. Finally in 

section 5 some concluding comments are given. 

2. LOG-LIKELIHOOD APPROXIMATED BY EE. 

A.  The general problem of regression. 

A wide variety of applications in signal processing and 

instrumentation are based on statistical modeling analysis. The 

linear regression model is one of the most used 
 

         
                                        

 

where   represents the response to   explicative variables for 

                   , and to a system parameterized 

by  , a set of functional parameters associated to the data 

     , which will be estimated by an identification procedure. 

The   variables are the errors, that model the system as a set of 

random processes which are independent and identically 

distributed accordingly to     . 
A natural extension of the linear regression model is the 

non-linear regression model, but now it is based on a 

parameterized function      
 

                                                  
 

This function is nonlinear with respect to the parameters, and 

its use is also considered because it has been shown in a large 

variety of signal processing and control applications that 

modeling when using nonlinear functions could be more 

realistic [15]. 

There exist some classical techniques for the estimation of 

θ, for example Least Squares (LS), Maximum Likelihood 

(ML), among others. In this work it is proposed a MAP 

estimation based on the entropy minimization of an estimated 

version of the density of the errors (         . 

B.  Likelihood pdf entropy estimators (EE). 

A classical procedure to estimate   when   is known, is based 

in a cost function or criterion      which varies in function 

     of the residuals or noise     , where 
 

                                                  
 

Thus, 

                  

 

   

 

   

                      

 

Our proposition for a new MAP scheme is to use the semi-

Huber MRF introduced in [6], together with a kernel estimator 

taken from [13-15] to obtain cost functions or criterions based 

on the entropy of the approximated likelihood function 

        . Thus,            is built on the basis of the entropy 

of an estimated version          of the distribution     . A first 

proposition is due to Pronzato and Thierry [16, 17], where the 

approximation is obtained using the classical kernel estimators 

which use the empirical distribution of the random vector 

                  : 
 

                                    

 
 

  
             

 

   

 

   

                       

 

     is a kernel weighted function which satisfies some 

imposed conditions treated in the work of Masry [18] and 

subsequently taken back by Devroye [19-21], Berlinet [22], 

and Loader [23] in some of their research work. The 

bandwidth      is given in function of the sample size and 

can be considered as a sequence of positive numbers that must 

satisfy      and        when      The strong 

uniform consistency of          and its convergence toward 

    , depend on a convenient procedure of bandwidth 

selection [14]. A simple and faster procedure is the technique 

proposed and developed by Terrell [24, 25]. 

Assuming that          converges and is consistent, such 

that              , then the entropy criterion over          

can be approximated to           . The fact that the entropy 

of any probability density function is invariant by translation, 

leads to consider one practical artifact to build an extended 

criterion based on the residuals or noise extended vector, 

given by: 
 

                                               
 

and on a suitable choice of  : 
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Then a fist version of the MAP Entropy Estimator (MAPEE) 

assuming unknown noise pdf, can be constructed: 
 

              
   

                                   

3. THE MAP ENTROPY ESTIMATOR (MAPEE). 

A function of the form      is assumed as a fixed kernel 
 

      
 

  
  

 

 
                                        

 

where     is a parameter called the kernel bandwidth. The 

fundamental problem in kernel density estimation lies in both 

the selection of an appropriate value for   and the selection of 

the kernel structure. Taking as a reference the works [13-15], 

the Hilbert kernels [20] was selected here, this is because of 

the results presented in the referred papers and mainly because 

of their structure is such that they avoid the bandwidth 

selection and their performance depend on other parameters, 

which selection is very easy. 

A.  The Hilbert kernel. 

Equation (13) is considered equivalent to            , 

where the smoothing factor   is canceled, obtaining: 
 

       
 

  
  

 

        
 

 

   

 

   

                       

 

The consistency of this class of estimators is proved in [20]. 

The Hilbert density estimate of order         is a redefined 

subclass that avoids the infinite peaks produced during 

estimation; in one dimensional case and using the value of 

    the kernel estimate is given by: 
 

        
 

  
            

 
 

      
       

             

 

where              
         

  
,    is the volume of 

the unit ball in    and       denotes the    metric on    . 

Finally, it is assumed that             at least in probability 

for almost all  . For a suitable choice of        , this 

estimator could be “blind asymptotically efficient”. 

B.  The semi-Hubber MRF. 

In this section it is obtained the complete cost function 

structure for the named         estimator derived from (3). 

The first term has been already described in the previous 

section, corresponding to the new approach proposed here; 

and the second one (         is based on the semi-Huber 

MRF introduced in [6, 26]. 

The Huber-like norm or semi-Huber potential function, for 

the two dimensional case, is given by: 

 

                    

       

                      

 

where   is the site or pixel of interest,   corresponds to the 

local neighbors, c is a constant term and 
 

      
  
 

 
    

        
 

  
                     

 

Now, substituting the particular expression (16) for 

         into equation (12), it can be obtained the complete 

form of the MAP entropy estimator for image segmentation 

degraded with non-Gaussian noise: 
 

              
   

                         
       

         

 

4. EXPERIMENTS AND RESULTS. 

In order to evaluate the performance of the new proposed 

approach of MAP entropy estimation applied to image 

segmentation, we present a set of experiments with some 

images, Fig. 2 shows the set of test images used. The first one 

is an attempt to apply this new approach to medical imaging 

and the second one is for the case of geographical imaging. 
 

  
Fig. 2. Set of test images: (a) MR image, (b) geographical image of a 

dam. 

 

The experiments was performed on a Mac Pro computer 

with a 2 × 2.8 GHz quad-core Intel Xeon processor and 2 GB 

at 800 MHz DDR2 RAM. The minimization process was 

made using the Levenberg-Marquardt algorithm provided in 

the optimization toolbox of MATLAB R2009a, where we 

needed to provide the initial value    to start the search of the 

solution. The two images were degraded with impulsive noise: 

imnoise(X,'salt&pepper',0.15), and the aim is to 

obtain the segmentation of the image in spite of the noise 

present. 

For a first experiment we used a generic image of the brain, 

trying to separate in three tissues: gray matter, white matter 

and cerebrospinal fluid (CSF). Fig. 3 shows the segmentation 

results from the noisy image for parameter values     and 

      , with an initial value of      . Segmentation 

results obtained with the new approach of entropy estimation 

are compared with those obtained applying the segmentation 

process assuming Gaussian noise for the first term of the MAP 

estimator, equation (3). Specifically, from [6]: 
 



 

            
   

         
 

   

           

       

         

 

Fig. 3(a) shows the image degraded with impulsive noise, 

as described in the previous paragraph, Fig. 3(b) shows the 

segmented image with the MAP entropy estimation approach, 

equation (18), and Fig. 3(c) shows the segmented image with 

Gaussian assumption, equation (19). Table I contains 

information about parameter values and times of computation. 
 

 
Fig. 3. Segmentation of an image of the brain: (a) image degraded by 

impulsive noise, (b) segmented image using MAPEE, (c) segmented 

image using MAP. 

 

TABLE I 

NUMERICAL RESULTS FOR THE SEGMENTATION OF BRAIN IMAGE 

       Time (s) 

MAPEE 90 110 457.9916 

MAP 90 110 333.7739 
 

By using the new approach of entropy estimation, time of 

computation increases, but in return the error in segmentation 

result is reduced significantly. In the black background the 

MAP result presents more and bigger gray spots, and in the 

part of white matter of the brain it can be seen also the same 

effect. 

A second experiment was made with a geographical image 

of a dam named Paso de las Piedras, located in Argentina, 

taken from Google Earth. For this image the interest is on the 

segmentation of the water region, excluding all other 

elements. Figure 4 shows segmented images applying both 

approaches and Table II presents information about the 

realization of these two processes. As in the previous 

experiment, it is visually perceptible in the water region that 

MAPEE improves the segmentation result, for the case of 

impulsive noise, with respect to the previous approach of 

Gaussian noise assumption (MAP). 

5. CONCLUSIONS. 

It was proposed a new approach for image segmentation 

where it can be considered not only Gaussian noise, but also 

other kind of degradation factors. In this work it was used 

impulsive noise that is one of the most degrading and difficult 

to deal with. It was proved that this new approach produces 

very good results in the sense of robustness, adapting to the 

nature of the degradation in the images. We are working in the 

improvement of this new proposal by adding additional 

filtering to enhance the final result. 

 
Fig. 5. Segmentation of a geographical image of a dam: (a) original 

image, (b) image degraded by impulsive noise, (c) segmented image 

using MAPEE, (d) segmented image using MAP. 

 

TABLE II 
NUMERICAL RESULTS FOR THE SEGMENTATION OF GEOGRAPHICAL IMAGE 

       Time (s) 

MAPEE 100 130 957.1709 

MAP 100 130 725.4942 
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