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Abstract— The present work introduces an alternative
method to deal with digital image restoration into a
Bayesian framework, particularly, the use of a new half-
quadratic function is proposed. The Bayesian methodology
is based on the prior knowledge of some information that
allows an efficient modelling of the image acquisition pro-
cess. The edge preservation of objects into the image while
smoothing noise is necessary in an adequate model. Thus,
we use a convexity criteria given by a semi-Huber function
to obtain adequate weighting of the cost functions (half-
quadratic) to be minimized. A comparison between the
new introduced scheme and other three existent schemes,
for the cases of noise filtering and image deblurring, is pre-
sented. Results showed a satisfactory performance and the
effectiveness of the proposed estimator.1

Keywords— Image filtering, image deblurring, Markov
Random Fields (MRF), Half-quadratic functions.

I. Introduction

THE use of powerful methods proposed in the seventies
under the name of Bayesian estimation [4], [5], [17],

are nowadays essential at least in the cases of image filter-
ing, segmentation and restoration (e.g. image deblurring)
[2]. The basic idea of these methods is to construct a Maxi-
mum a posteriori (MAP) estimate of the modes or so called
estimator of true images by using Markov Random Fields
(MRF) in a Bayesian framework. The idea is based on a
robust scheme which could be adapted to reject outliers,
tackling situations where noise is present in different forms
during the acquisition process [3], [8], [15], [16], [28], [29],
[30], [33].

The image restoration or recuperation approaches of an
image to its original condition given a degraded image, pass
by reverting the effects caused by a distortion function. In
fact, the degradation characteristics given by F (x) and n
in equation (1) are crucial information and they must be
known or estimated during the inversion procedure. Typ-
ically, F (x) is related to a point spread function H which
can be linked with the probability distribution of the noise
contamination n. In the case of MAP filters, usually the
additive Gaussian noise is considered. A global image for-
mulation model could be:

y = F (x) + n, (1)

where F (x) is a functional that could take for instance,
two forms: F (x) = x and F (x) = Hx, being H a linear
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operator which models the image degradation. All vari-
ables presented along the text are, x: which represents a
Markov random field (or image to be estimated), y: rep-
resents the observed image with additive noise n and / or
distorted by H, and x̂: is the estimator of x with respect
to data y. There is another source of information which
imposes a key rule in the image processing context, this
is the spatial information that represents the likelihood or
correlation between the intensity values of a neighborhood
of pixels well specified. The modellig, when using MRF,
takes into account such spatial interaction and it was intro-
duced and formalized by Besag [4], where the powerfulness
of these statistical tools is shown (as well as in pioneering
works [5], [17], [6], [39]). Combining both kinds of infor-
mation in a statistical framework, the restoration is led
by an estimation procedure given the maximum a posteri-
ori of the true images when the distortion functionals are
known. The algorithms implemented in this work were de-
veloped considering a degraded signal, where the resulting
non-linear recursive filters show excellent characteristics to
preserve all the details contained in the image, and on the
other hand, they smooth the noise components. Particu-
larly four estimation schemes are implemented using, the
semi-Huber potential function which is proposed as an ex-
tension of some previous works [13], [14] (see in section III),
and the generalized Gaussian MRF introduced in the work
of Bouman [6], the Welch and Tukey potential functions as
used in the works of Rivera [35], [36], [37] (see in section
IV).

Section II describes the general definition of MAP es-
timator and MRFs. The potential functions compared in
this paper must be obtained or proposed to conduct ade-
quately the inversion process. Such functions are described
in sections III and IV where the convexity is the key to for-
mulate an adequate criterion to be minimized. In sections
V and VI, the MAP estimators resulting from different
MRF structures and some illustrative results are briefly
discussed. Finally, in section VII some partial conclusions
and comments are given.

II. MAP estimation and Markov random fields

The problem of image estimation (e.g. filtering or restora-
tion) into a Bayesian framework deals with the solution of
an inverse problem, where the estimation process is carried
out in a whole stochastic environment. The most popular
estimators used nowadays are:
Maximum Likelihood (ML) estimator:

x̂ML = arg max
x∈X

p(y|x), (2)
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this estimator is a classical approach in estimation theory.
In a probabilistic framework, the regularization of the ML
estimator leads to the Bayesian approach, where it is im-
portant to exploit all known information or so called prior
information about any process under study, which gives a
better statistical estimator called
Maximum A Posteriori (MAP) estimator:

x̂MAP = arg max
x∈X

p(x|y)

= arg max
x∈X

(log p(y|x) + log g(x)) ,
(3)

in this case, the estimator is regularized by using a Markov
random field function g(x) which models all prior informa-
tion as a whole probability distribution, where X is the set
of pixels x capable to maximize p(x|y), and p(y|x) is the
likelihood probability function from y given x.
The Markov random fields (MRF) can be represented in a
general way by using the following equation:

g(x) =
1
Z

exp

(
−

∑

c∈C

Vc(x)

)
, (4)

where Z is a normalization constant, C is a set of “cliques”
c or local neighborhoods of pixels, and Vc(x) is a weighting
function given over the local group of points c. Generally,
the “cliques” correspond to the sets of neighborhoods of
pixels if ∀s, r ∈ c, s and r are neighbors, and one can
construct a neighborhood system called ∂s; for the 8 closest
neighbors ∂s = {r : |s−r| < 2}. The Markov random fields
have the capacity to represent various image sources.

There is a variety of MRF models which depend on the
cost functions also known as potential functions that can be
used. Each potential function characterizes the interactions
between pixels in the same local group. As an example, the
following family represents convex functions:

ρ(∆) = |∆|p (5)

where ∆ = λ[xs−xr], λ is a constant parameter to be cho-
sen, and p takes constant values such as p ≥ 1 accordingly
to the theorem 2 in [6].

III. Semi-Huber (SH) proposed potential
function

The principal apport of this work is the proposition of the
semi-Huber potential for image restoration, which perfor-
mance is comparable with respect to half-quadratic func-
tionals performance. In order to assure completely the ro-
bustness into the edge preserving image filtering, diminish-
ing at the same time the convergence speed, the Huber–
like norm or semi–Huber (SH) potential function is pro-
posed as a half-quadratic (HQ) function. Such functional
has been used in one dimensional robust estimation as de-
scribed in [13] for the case of non-linear regression. This
function is adjusted in this work in two dimensions accord-
ing to the following equation:

log g(x) = −λ


 ∑

{s,r}∈C

bsrρ1(x)


 + ct, (6)

where

ρ1(x) =
∆2

0

2

(√
1 +

4ϕ1(x)
∆2

0

− 1

)
,

and where ∆0 > 0 is a constant value, bsr is a constant that
depends on the distance between the r and s pixels, ct is a
constant term, and ϕ1(x) = e2 where e = (xs − xr). The
potential function ρ1(x) fulfills the following conditions

ρ1(x) ≥ 0, ∀x with ρ1(0) = 0,
ψ(x) ≡ ∂ρ1(x)/∂x, exists,

ρ1(x) = ρ1(−x), is symmetric,
w(x) ≡ ψ(x)

2x , exists,
limx→+∞ w(x) = µ, 0 ≤ µ < +∞,
limx→+0 w(x) = M, 0 < M < +∞.

(7)

Figure 1(a) shows the behavior of the semi-Huber proposed
function for different ∆0 values, in the range of x ∈ [−8, 8].
Notice that there is not necessary a scale parameter and
that the potential function meets all requirements imposed
by conditions (7).
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Fig. 1. The four convex potential functions used: (a) The Semi-
Huber potential function for ∆0 with different values; (b) The Gen-
eralized Gaussian potential function for p different values, while q = 2;
(c) The granularity control Welch potential function for k different
values, while µ = 0.01; (d) The granularity control Tukey potential
function for k different values, while µ = 0.01.

IV. Generalized Gaussian MRF and other
half-quadratic functions

In some works [7], [10], [11], [21], [22] a variety of new po-
tential functions were introduced, such proposed functions
are semi-quadratic functionals or half-quadratic and they
characterize certain convexity into the regularization term
[18], [19](eg. extension of penalization) which permits to
build efficient and robust estimators in the sense of data
preservation which is linked to the original or source im-
age. Also, the necessary time of computation decreases

Reunión de Otoño de Potencia, 
Electrónica y Computación

ROPEC' 2011,  
INTERNACIONAL

Artículo aceptado para ser presentado como ponencia oral 210 ISBN: 978-607-95476-3-9 



with respect to other proposed schemes as shown by M.
Nikolova [8], [15], [16], [28], [29], [30], [31] and Labat [23],
[24]. On the other hand, a way to obtain the posterior dis-
tribution of images has been proposed in previous works
from A. Gibbs [20], in this case, it is necessary to use so-
phisticated stochastic simulation techniques based on the
Markov Chain Monte Carlo (MCMC) methods [27], [38].
If it is possible to obtain the posterior distribution of any
image, then, it is also possible to sample from such pos-
terior distribution to obtain the MAP estimator, or other
estimators such as the median estimator. The MAP and
the median estimators search the principal mode of the
posterior distribution.

In the present paper some potential functions are com-
pared. The proposed semi-Huber is compared with respect
to the generalized Guassian MRF introduced in [6], [39],
the Welch, and Tukey potential functions with granularity
control. These two last functions were proposed and used in
recent works [35], [36], [37] proving excellent performance.

A. Generalized Gaussian MRF (GGMRF)

If one considers to generalize the Gaussian MRF (when p =
q = 2 one has a GMRF, see equation (15)) as proposed in
[6], then the generalized potential functions can be limited
such as

ρ2(∆) = |∆|p , for 1 ≤ p ≤ 2, (8)

obtaining the GGMRF

log g(x) = −λp


∑

s∈S

asx
p
s +

∑

{s,r}∈C

bsr|xs − xr|p

 + ct,

(9)
where theoretically as > 0 and bsr > 0, s is the site or pixel
of interest and S is the set of sites into the whole MRF,
and r corresponds to the local neighbors. In practice it is
recommended to take as = 0 thus, the unicity of x̂MAP,
can be assured given that the likelihood term is quadratic
q = 2, then

log g(x) = −λp


 ∑

{s,r}∈C

bsr|xs − xr|p

 + ct, (10)

and from equation (3), log p(y|x) is strictly convex and so
x̂MAP is continuous in y, and in p. The choice of the power
p is capital, since it constrains the convergence speed of the
local or global estimator, and the quality of the restored im-
age. Small values for p allows abrupt discontinuities mod-
eling while large values smooth them. Figure 1(b) shows
the behavior of the generalized Gaussian function for dif-
ferent p values, in the range of x ∈ [−8, 8]. The proposition
of such function avoids the use of a scale parameter and at
the same time the potential function meets all requirements
imposed by conditions (7).

B. Welsh MRF function

Known as a hard redescender potential function with gran-
ularity control given by µ, and proposed in [35]

log g(x) = −λ


µ

∑

{s,r}∈C

bsrϕ1(x)

+(1− µ)
∑

{s,r}∈C

bsrρ3(x)


 + ct,

(11)

where k is a positive scale parameter and

ρ3(x) = 1− 1
2k

exp(−kϕ1(x)).

This function is also half-quadratic such as the Tukey func-
tion presented in the following subsection. Figure 1(c)
shows the behavior of the Welsh function with granular-
ity control for different k threshold values, in the range of
x ∈ [−8, 8], µ = 0.01. Also, this potential function fulfills
all requirements imposed by conditions (7).

C. Tukey MRF function

This is another hard redescender potential function, pro-
posed in [35] that fulfills all requirements imposed by con-
ditions (7)

log g(x) = −λ


µ

∑

{s,r}∈C

bsrϕ1(x)

+(1− µ)
∑

{s,r}∈C

bsrρ4(x)


 + ct,

(12)

where

ρ4(x) =
{

1− (1− (2e/k)2)3, for |e/k| < 1/2,
1, otherwise.

and where k is also a scale parameter. On the other hand,
ϕ1(x) can be the quadratic function which together with
µ induces the granularity control. Figure 1(d) shows the
behavior of the Tukey function with granularity control for
different k values, in the range of x ∈ [−8, 8], µ = 0.01.

V. MAP estimators and practical convergence

A. Image filtering

In this section some estimators are deduced. The single
problem of filtering noise to restore an observed signal y
leads to establish the estimators. The observation equation
could be

y = x + n, where n ∼ N (0, Iσ2
n),

where I is the identity matrix, and where the general MAP
estimator for this case is deduced from the next minimiza-
tion process

x̂MAP = arg min
x∈X

(− log p(y|x)− log g(x)) . (13)
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Thus, under hypothesis of Gaussian noise with variance σ2
n

the MAP estimators for this particular problem are given
by,

x̂MAPk
= arg min

x∈X

(∑

s∈S

|ys − xs|2 − log g(x)

)
, (14)

where k = 1, 2, 3, 4 according to the four SH, GGMRF,
Welsh and Tukey potential functions, and assuming homo-
geneity of the MRFs. On the other hand, the minimization
problem leads to consider various methods [1], [8], [9], [28],
[29], [30], [31]:
• global iterative techniques such as: the descendent gra-
dient [31], conjugate gradient [35] (for recent propositions
one can consult the work [23], [24]), Gauss-Seidel, Over-
relaxed methods, etc.
• local minimization techniques: minimization at each
pixel xs (which generally needs more time, but from our
point of view are more precise), where also some of the
above methods can be used.
In this work the local techniques were used (the expecta-
tion maximization (EM) could also be implemented, or the
complete half-quadratic scheme as proposed by Geman and
Reinolds [18], and Geman and Yang [19]), since all hyper-
parameters included into the potential functions were cho-
sen heuristically or according to values proposed in refer-
ences. Only, the step of minimization with respect to x was
implemented to probe convergence of estimators. For in-
stance, the local MAP2 estimator for the GGMRF is given
by

x̂s = arg min
xs∈X

{
|ys − xs|q + σqλp

∑

r∈∂s

br−s|xs − xr|p
}

.

(15)
For intermediate values of p and q the estimators become
sub-optimal, and the iterated methods can be used to min-
imize the obtained criterions. Some iterative methods are
the sub–gradient, and the Levenberg–Marquardt method of
MATLAB 7, the last was used in this work [12]. For cases
where q 6= p, for example q = 2 and 1 < p < 2, some stud-
ies and different prior functions have been proposed in [15],
[16], [28], [29], [30], [31], particulary in [15], [16], [28], [30]
where non-convex regularized least-squares schemes are de-
duced and its convergence is analyzed (where 0 < p < 1)
with very good times of convergence as presented in [32].

B. Image deconvolution

On the other hand, for the problem of image deblurring to
restore an observed signal y, the observation equation used
is given by

y = Hx + n, with n ∼ N (0, Iσ2
n). (16)

Now, for the four MAP estimators the likelihood term
changes, such that,

x̂MAPk
= arg min

x∈X

{∑

s∈S

|ys −Hxs|2 − log g(x)

}
, (17)

where the matrix H is known and given by the following
truncated Gaussian blurring function,

h(i, j) = exp
(−i2 − j2

2σ2
b

)
, for − 3 ≤ i, j ≤ 3, (18)

as used also in [32], with σb = 1.5. And k = 1, 2, 3, 4 ac-
cording to the four SH, GGMRF, Welsh and Tukey poten-
tial functions. Here, the results were improved combining
ideas introduced in a similar Bayesian way by Levin [25],
[26] adding a Sparse prior (SP) for filtering and then re-
constructing the image.

VI. Some experiments

Results presented in this section were concerned exper-
imenting extensively with five images: synthetic, Lena,
Cameraman, Boat and fringe pattern, to probe the per-
formance of the presented estimators.

A. Image filtering

Continuing with the problem of filtering noise, some es-
timation results are presented when images are contami-
nated by Gaussian noise, and there are no other type of
distortions. The first experiment was made considering
that σn = 5, 10, 15. Different levels of noise were added to
the images: n ∼ N (0, Iσ2

n), the values of σn are given such
that the obtained degradation is perceptible and difficult to
eliminate. The results were compared using different values
for ∆0 and with λ = 1 (MAP1), different values for p and λ
preserving q = 2 (MAP2), and different values for k, µ and
λ (MAP3 and MAP4). Generally, with the four estimators
the filtering task gives good visual results (see Figures 2
and 3), but the time of computation is different between
them, the fastest estimator is the MAP3, while the slowest
is the MAP2 with p = 1.2 which results correspond to the
Cameraman in Figure 2 (d). In the case of the Welsh and
Tukey functionals the tuning problems must be solved im-
plementing in correct ways more sophisticated algorithms
based on the expectation maximization method. In Fig-
ure 3 a synthetic generated fringe pattern image was also
used to probe performance of estimators. In this case, it is
known how is the noise structure that contaminates data,
but the signal-to-noise is unknown. Clearly, once again
the results obtained coincide with the previous results for
other images, but with an increase of time of computation
which has a relation with the image dimensions (as shown
in Table I). Some interesting applications of robust estima-
tion are particulary focused in phase recovery from fringe
patterns as presented in a recent work [40], phase unwrap-
ping, and some other problems in optical instrumentation,
in this sense some filtering results were thus obtained using
the presented MAP estimators.

Finally, Table I shows the performance of the four MAP
estimators for the problem of filtering Gaussian noise,
where an objective evaluation is conducted accordingly to
the pique signal to noise ratio (PSNR). Also the compu-
tation times in MATLAB are shown in Table I. Such
comparative evaluation shows that our proposed approach
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Cameraman Original

(a)

Cameraman, Gaussian noise σ = 15

(b)

MRF SH estimation, 28.9 dB

(c)

MRF GG estimation, 28.8 dB

(d)

MRF Welsh estimation, 27.4 dB

(e)

MRF Tukey estimation, 27.3 dB

(f)

Fig. 2. Results for Cameraman standard image: (a) describes the
original image; (b) describes the noisy image using Gaussian noise
with σn = 15; (c) filtered image using MAP1 (∆0 = 20); (d) filtered
image using MAP2 (λ = 30, p = 1.2); (c) filtered image using MAP3
(k = 2000, µ = 0.025, λ = 30); (d) filtered image using MAP4
(k = 2000, µ = 0.025, λ = 30).

MAP1, gives better or similar performance with respect to
MAP2, MAP3, and MAP4. On the other hand, the use of

TABLE I

Results obtained in evaluating the filtering capacity of the

different MAP estimators using four images.

� σn = 15 MAP1 MAP2 MAP3 MAP4

synthetic PSNR 24.7 24.6 24.7 24.6
35× 35 PSNR filt. 28.8 27.6 25.5 25.6

Time (sec) 5.9 7.6 4.6 5.2
Lena PSNR 24.5 24.5 24.6 24.6

120× 120 PSNR filt. 29.1 28.9 26.0 27.5
Time (sec) 75.3 80.6 59.9 59.1

Cameraman PSNR 24.6 24.7 24.6 24.6
256× 256 PSNR filt. 28.9 28.8 27.3 27.4

Time (sec) 341.7 355.9 243.8 243.6
Boat PSNR 24.6 24.6 24.6 24.6

512× 512 PSNR filt. 29.4 29.5 27.3 28.8
Time (sec) 1,243.3 1,545.5 1,014.2 1,051.4

half-quadratic potential functions permits flexibility on the
computation times [15], [16], [30], but still is a challenge to
tune correctly the hyper-parameters to obtain a better per-
formance in the sense of quality restoration. Perhaps the
most simple potential function to tune is the semi-Huber

(MAP1). Also, making the correct hypothesis over the
noise could help to improve the performance of the estima-
tor. This could be directly reflected by proposing a more
adapted likelihood function, as proposed in [3] and some
other recent works [28] (in cases of non-Gaussian noise),
where a connection with variational and partial differential
equations is illustrated evoking the famous work of Perona
and Malik [34], and some recent related works.
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Fig. 3. a) Image with Gaussian noise with unknown σn (200× 200),
b) MAP2 estimation, p = 1.5 (100 s), c) MAP2 estimation, p = 1.2
(120 s), d) MAP1 estimation (52 s), e) MAP3 estimation (50 s) and
f) MAP4 estimation (52 s).

B. Image deconvolution

Now, for the problem of image deconvolution some estima-
tion results are presented when images are contaminated
by Gaussian noise, and Gaussian distortion (with σb = 1.5)
blurring the image. This second experiment was made con-
sidering that σn = 3, 5, 7. The results were compared using
different values for ∆0 and with λ = 1 (MAP1), different
values for p and λ preserving q = 2 (MAP2), and different
values for k, µ and λ (MAP3 and MAP4). Figure 4 shows
a comparison of results obtained for the Cameraman image
accordingly to the four MAP estimators. One can notice
that preserving values of hyper-parameters near those used
for the filtering case, the estimators smooth the noise but
does not made a good recuperation of the image. One
must change the hyper-parameter values searching a trade
of between the granularity of the noise and the sharpness
of the image. In Figure 5 the results obtained on the Cam-
eraman image using a combination of proposed estimators
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Cameraman Original

(a)

Observed image, Gaussian distortion + Gaussian noise

(b)

MRF SH restored

(c)

MRF GG restored

(d)

MRF Welsh restored

(e)

MRF Tukey restored

(f)

Fig. 4. Results for Cameraman standard image: (a) describes the
original image; (b) describes the distorted image using Gaussian noise
with σn = 3; (c) restored image using MAP1 (∆0 = 20); (d) restored
image using MAP2 (λ = 30, p = 1.2); (c) restored image using MAP3
(k = 2000, µ = 0.0015, λ = 10); (d) restored image using MAP4
(k = 2000, µ = 0.0015, λ = 10).

together with a Sparse prior (SP) deconvolution technique
introduced in [25], [26], are shown, the improvement in
restoration is visible. Also, in Table II the performance
of the four MAP estimators and the SP deconvolution is
shown, where an objective evaluation is made accordingly
to the PSNR and also times of calculation in MATLAB
are shown. Here also the approach MAP1, gives similar
performance with respect to MAP2, MAP3, and MAP4.

TABLE II

Results obtained in evaluating the deconvolution capacity

of the different MAP estimators using three images.

� σn = 3 MAP1 MAP2 MAP3 MAP4

Lena PSNR 17.4 17.4 17.4 17.4
120× 120 PSNR rest. 17.5 17.6 17.4 17.3

PSNR rest. SP 20.8 20.8 20.8 20.4
Time (sec) 58.9 91.3 58.8 59.2

Cameraman PSNR 19.3 19.3 19.3 19.3
256× 256 PSNR rest. 19.4 19.4 19.4 19.3

PSNR rest. SP 22.5 22.3 22.5 22.2
Time (sec) 257.7 408.0 256.8 256.9

Boat PSNR 20.4 20.4 20.4 20.4
512× 512 PSNR rest. 20.5 20.5 20.4 20.4

PSNR rest. SP 25.6 25.8 26.0 25.9
Time (sec) 1,014.9 1,606.5 1,011.8 1,017.5

Cameraman Original

(a)

Only SP restored

(b)

MRF SH restored, using also SP

(c)

MRF GG restored, using also SP

(d)

MRF Welsh restored, using also SP

(e)

MRF Tukey restored, using also SP

(f)

Fig. 5. Results for Cameraman standard image: (a) describes the
original image; (b) describes restored image using only a Sparse prior
(SP) deconvolution technique [25]; (c) restored image using MAP1
and SP (∆0 = 20); (d) restored image using MAP2 and SP (λ = 0.15,
p = 1.2); (c) restored image using MAP3 and SP (k = 2000, µ =
0.0015, λ = 10); (d) restored image using MAP4 and SP (k = 2000,
µ = 0.0015, λ = 10).

VII. Conclusions and comments

The use of prior distribution functions based on the
logarithm, with any degree of convexity and quasi-
homogeneous, permits to consider a variety of possible
choices of potential functions. Maybe, the most important
challenges that must be well solved are: the adequate se-
lection of hyper-parameters from potential functions, where
different versions of the EM algorithms try to tackle this
problem. Another is the minimization procedure which in
any sense will regulate the convergence speed as proposed
in [1], [18], [19], [35], [23], [24], and [28], [29], [31].

In the case of the semi-Huber potential function, the
tuning is less complicated and of course, the estimator ma-
nipulation is far simpler than the Welsh and Tukey. How-
ever, this problem can be solved as argued by Idier [7]
and Rivera [35] by implementing more sophisticated algo-
rithms with the compromise to reduce time of computation
and better quality in restoration as recently exposed in [9],
[32], [33]. The final objective of this work has been to con-
tribute with a series of software tools for image analysis
focused for instance to optical instrumentation tasks such
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as those treated in the works [40] and [36], [37] obtaining
competitive results in filtering and reconstruction.
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