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Abstract

In this work, a novel model of Markov random field is
presented, named Semi-Huber potential function, applied
to image segmentation in presence of noise. The main
difference with respect to other models that have been
taken as a reference, is that the number of parameters
in the proposed model is significatively smaller. The idea
is to choose adequate parameter values heuristically for
a good segmentation of the image. In that sense, experi-
ment results show that the proposed model allows a faster
and easier parameter adjustment with razonable compu-
tation times.

1 Introduction.

Segmentation is the first step in many image processing
applications. Some of them comprise industrial quality
control, medicine, robot navigation, geophysical explo-
ration, military applications, agriculture, among others.
Image segmentation is an image processing method that
subdivides an image into its constitutive regions or ob-
jects. However, digital images are usually affected by
some degrading factors as blurring or noise coming from
image acquisition systems, resulting in degraded or dis-
torted images and, as a consequence, yielding inadequate
segmentation results. A degradation process can be de-
scribed as a degradation function H that, together with
an additive noise term n, it operates on an input image
x and produces a degraded image y:

y = Hx+ n. (1)

Given y, some previous knowledge about the degradation
function and some knowledge about the additive noise
term, the aim is to obtain an estimation x̂ of the original
image x for a good segmentation of the regions or objects
into it [1].

In general, segmentation methods are based on two
basic properties of the pixels in relation to their local
neighborhood, discontinuity and similarity [2, 3]. Un-
fortunately, these both techniques often fail to produce

accurate segmentation in presence of noise. To over-
come these difficulties, the use of Markov random fields
(MRF’s) within a Bayesian framework has become a
powerful method and has been used in different works
and different areas [4], [6]-[15] because enables posing
this problem, and many others in image processing, as
statistical estimation problems [8] and can capture spa-
tial interaction among pixels, where the solution is going
to be estimated from the degraded image.

Usually, information data (input image) is not enough
for an accurate estimation of the original image, so the
regularization of the problem is necessary. This means
that a priori information or assumptions about the struc-
ture of x need to be introduced in the estimation process
[12]. The a priori knowledge is given in terms of a prob-
ability distribution that, together with a probabilistic
description of the noise that corrupts the observations,
allows the use of Bayes theory to compute the posterior
distribution, which represents the likelihood of a solution
x given the observations y [16].

Statistical methods look for the solution that best
matches the probabilistic behavior of the data. Max-
imum a posteriori (MAP) estimation allows the intro-
duction of a prior distribution that reflects knowledge
or beliefs concerning the types of images acceptable as
estimates of the original one [4]. There is a wide vari-
ety of MRF models; the difference between them lies on
the choice of a potential function. Each of them charac-
terizes the interactions between pixels in the same local
group.

In this work, we introduce a novel potential function
named semi Huber MRF as a proposal of a new algo-
rithm for image segmentation. The main advantage of
this model lies in the fact that the hyperparameters to be
tuned for an adequate result are fewer than those needed
by other models that were taken as a reference to verify
the results of the proposed one. Section 2 provides an
overview about the Bayesian approach, include a theo-
retical basis of Markov random fields and describes the
MAP estimators used in this work, including the pro-
posed model. Some results and comments for image seg-
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mentation experiments are presented in section 3. Fi-
nally, in section 4 we give some conclusions.

2 Markov random fields and
MAP estimation.

Let S = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} be the set of sites
of a rectangular lattice for a 2D image of m× n size. Its
elements correspond to the locations where an image is
sampled. The sites in S are related to one another via
a neighborhood system defined as N = {Ni|i ∈ S}. A
clique c is defined as a subset of sites in S that consist
of either a single site, a pair of neighboring sites, a triple
of neighboring sites, and so on [19]. X and Y are going
to represent MRF’s, Y is going to represent the MRF for
the observed data and y is a specific configuration of the
field Y. X is the MRF for the segmentation map and x
is a segmentation configuration of the field X.

A Bayesian model is a statistical description of an esti-
mation problem that consist of three components. First,
the prior model p(x), is a probabilistic description of the
real world or its properties, that we are trying to esti-
mate. Second, the sensor model p(y|x), is a description
of the behavior of noise or stochastic characteristics that
relate the original state x to the sampled input image or
sensor values y. These two components are combined to
obtain the third component, the posterior model p(x|y),
which is a probabilistic description of the current esti-
mation of the original scene x, given the observed data
y. The model is obtained using the Bayes rule:

p(x|y) =
p(y|x)p(x)

p(y)
. (2)

In its usual application [10], Bayesian modeling is used to
find the maximum a posteriori (MAP) estimate, that is,
the value of x that maximizes the conditional probability
p(x|y).

x̂map = arg max
x∈X
{p(x|y)}

= arg max
x∈X
{log p(y|x) + log g(x)}, (3)

where g(x) is a MRF function that models prior informa-
tion of the phenomena to be estimated as a probability
distribution, X is the set of pixels capable to maximize
p(x|y) and p(y|x) is the likelihood function from y given
x [18].

The Hammersley-Clifford theorem establishes the
equivalence between Markov random fields and Gibbs
random fields [10, 15, 19, 20], so the MRF can be de-
termined by defining the potential function in a Gibbs
distribution, whose basic form is given by

g(x) =
1

Z
exp

(
− 1

T
U(x)

)
, (4)

where Z =
∑

x∈X exp
(
− 1

T U(x)
)

is the partition function
and in practice is a normalization constant value. T is
the temperature parameter, that controls the sharpness
of the distribution [10] and in practice is assumed to be
1 [19]. U(x) =

∑
c∈C Vc(x) is the energy function which

is determined as a sum of clique potentials Vc(x) over
all posible cliques C in the neighborhood [7, 14, 15, 19].
Usually the second order pairwise cliques are selected
and the potentials of all non-pairwise cliques are defined
to be zeros [15]. In that sense, we will consider in this
work simple MRF’s based on a second order neighbor-
hood (eight sites) and potential functions of the form
ρ(λ(xi − xj)) which act on pairs of sites, where λ is a
constant that scales the difference between pixel values.

2.1 Semi-Huber proposal.

For log g(x) in equation (3), we introduce the Huber-like
norm or semi-Huber potential function, which has been
used in one dimensional robust estimation problems [21]
for the case of non-linear regression. This function has
been modified for the two dimensional case according
with the following equation:

log g(x) = −λ
(∑

{s,r}∈C bsrρ1(x)
)

+ c, (5)

where s is the site of interest, r corresponds to the local
neighbors, c is a constant term and

ρ1(x) =
∆2

0

2

(√
1 +

4ϕ1(x)

∆2
0

− 1

)
. (6)

Here ∆0 > 0 is a constant value and ϕ1(x) = e2 with
e = (xs − xr).

2.2 Generalized Gaussian MRF
(GGMRF).

As proposed by Bouman [5], the potential function for a
GGMRF is given by

log g(x) = −λp
(∑

s∈S asx
p
s+∑

{s,r}∈C bsr|xs − xr|
p
)

+ c,
(7)

where as ≥ 0 and bsr > 0. In practice it is recommended
to take as = 0 for Gaussian noise assumption, thus the
unicity of the MAP estimator can be assured, resulting
in

log g(x) = −λp
(∑

{s,r}∈C bsr|xs − xr|
p
)

+ c. (8)

The selected value for power p is determinant, since it
constrains the convergence speed of the local or global
estimator and the quality of the estimated image [18].
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2.3 Welsh’s potential function.

The Welsh’s potential function, proposed by Rivera [12]
as a hard redescender potential function with granularity
control, is defined as

log g(x) = −λ
(
µ
∑
{s,r}∈C bsrϕ1(x)

+(1− µ)
∑
{s,r}∈C bsrρ2(x)

)
+ c,

(9)

where µ is the granularity control parameter,

ρ2(x) = 1− 1

2k
exp(−kϕ1(x)), (10)

and k is a positive scale parameter for edge preservation.

2.4 Tukey’s potential function.

Another hard redescender potential function also pro-
posed by Rivera [12] is the Tukey’s potential function
with granularity control, given by

log g(x) = −λ
(
µ
∑
{s,r}∈C bsrϕ1(x)

+(1− µ)
∑
{s,r}∈C bsrρ3(x)

)
+ c,

(11)

where, in this case

ρ3(x) =

{
1−

(
1− (2e/k)2

)3
, for e

k
< 1

2
,

1, in other case,
(12)

k is also a scale parameter and µ provides the granularity
control too.

2.5 MAP estimators.

With equation (3) and the MRF’s previously defined, the
corresponding MAP estimators are deduced. The MAP
estimator for a GGMRF [5] is given by:

x̂MAP1 = arg min
x∈X

{∑
s∈S |ys − xs|

q+

σqλp∑
{s,r}∈C bs−r |xs − xr|p

}
.

(13)

The minimization problem can be solved from a global
or local point of view considering various methods [12,
22, 23, 24]. As global iterative techniques we have the
descendent gradient, the conjugate gradient, the Gauss-
Seidel, among others. Local minimization techniques
work minimizing at each pixel xs. In this work the
Levenberg-Marquardt algorithm was used for local mini-
mization, this is because all the parameters included into
the potential functions were chosen heuristically or ac-
cording with values proposed in references [18].Estimator
performance depends on the chosen values for parame-
ters p and q. If p = q = 2, we have the Gaussian condi-
tion and the estimator is similar to the least-square one.
When p = q = 1, the criterion is absolute and the es-
timator converges to the median one; nevertheless, this

criterion is not differentiable at zero and it causes in-
stability in the minimization process [18]. The form of
the first term in equation (13) depends on the type of
noise regarded. For all experiments made in this work
we assumed that noise has a Gaussian distribution with
mean value µn and variance σ2

n. From this idea, the
corresponding value for parameter q is 2.

A second MAP estimator is for the semi-Hubber po-
tential function (5) [18, 21] given by

x̂MAP2 = arg min
x∈X

{∑
s∈S |ys − xs|

2+

λ
∑
{s,r}∈C bs−rρ1(x)

}
.

(14)

As a third MAP estimator we introduce in equation
(3) the Welsh’s potential function [12], obtaining

x̂MAP3 = arg min
x∈X

{∑
s∈S |ys − xs|

2 + λ
(
µ
∑
{s,r}∈C bs−r×

ϕ1(x) + (1− µ)
∑
{s,r}∈C bs−rρ2(x)

)}
.

(15)

Finally, the last MAP estimator to be used corre-
sponds to the Tukey’s potential function [12], which is
given by the expression

x̂map4 = arg min
x∈X

{∑
s∈S |ys − xs|

2 + λ
(
µ
∑
{s,r}∈C bs−r×

ϕ1(x) + (1− µ)
∑
{s,r}∈C bs−rρ3(x)

)}
.

(16)

3 Experiments and results.

We present a set of experiments to show the performance
of the proposed model in the segmentation of some im-
ages. All the tests was executed on a Mac Pro computer
with a 2× 2.8 GHz Quad-Core Intel Xeon processor and
2 GB at 800 MHz DDR2 RAM. The first experiment
was carried out with an image of the brain, trying to
segment in three tissues: gray matter, white matter and
cerebrospinal fluid. Figure 1 shows segmentation results
of the brain image corrupted by centered Gaussian noise,
n ∼ N(0, Iσ2). In top raw from left to right we have the
original brain image, brain image with noise (σ2 = 10),
and segmentation result using the GGMRF. In the bot-
tom raw we have the segmentation result using the semi-
Huber MRF, segmentation result using the Welsh’s MRF
and segmentation result using the Tukey’s MRF. Table 1
shows computation times taken by each model, and table
2 shows the list of hyperparameters to be tuned. Even

Table 1: Computation times taken by each model of MRF
for segmentation of brain image.

IMAGE MODEL TIME (s)

brain slice CAMGG 339.0461
(187 × 161) Semi-Huber 339.1406

Tukey 334.0902
Welch 332.3922
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Figure 1: Segmentation of a brain image into three tissues
(see text).

Table 2: List of parameter values for segmentation results in
figure 1.

CAMGG Semi-Huber Welsh Tukey

σ = 0.3 ∆0 = 150 λ = 10 λ = 10
λ = 40 X0 = 80 k = 10 k = 10
p = 1.5 µ = 0.5 µ = 0.5
X0 = 80 X0 = 58 X0 = 58

though our proposed model did not yield the shortest
time, difference is not significant and visual result is good
enough with respect to those obtained with other models.
What matters here is that from the original semi-Huber
MRF model, we only had to adjust one hyperparame-
ter value, ∆0 in this case, keeping λ = 1. Therefore,
the number of times that it was necessary to run the
segmentation process was significantly lower than with
other models.

A second experiment was made with a geographical
image of Paso de las Piedras dam, located in Argentina,
taken from Google Earth. In this case, the main interest
is on segment water from no water in spite of the noise
present. Figure 2 shows segmentation results of the dike
image. In top raw from left to right we have the original
dike image, dike image corrupted by Gaussian noise with
σ2 = 20, and segmentation result using the GGMRF.
In the bottom raw we have the segmentation result us-
ing the semi-Huber MRF, segmentation result using the
Welsh’s MRF and segmentation result using the Tukey’s
MRF. Table 3 shows computation times taken by each
model and table 4 shows the list of hyperparameters val-
ues by which results in figure 2 were obtained. Here

Table 3: Computation times taken by each model of MRF
for segmentation of dike image.

IMAGE MODEL TIME (s)

dike image CAMGG 704.3832
(310 × 208) Semi-Huber 713.5470

Tukey 697.2369
Welch 704.6216

the semi-Huber proposed model took the longest time;
nevertheless, the relative difference is not so big. Also, it
can be seen that noise reduction looks more satisfactory
than GGMRF model for example, where we can see in
the water region, bigger gray points than the others.

Figure 2: Segmentation of a geographical image into water
and no water (see text).

Table 4: List of parameter values for segmentation results in
figure 2.

CAMGG Semi-Huber Welsh Tukey

σ = 0.4 ∆0 = 60 λ = 10 λ = 10
λ = 200 X0 = 90 k = 10 k = 10
p = 1.4 µ = 0.5 µ = 0.5
X0 = 80 X0 = 128 X0 = 128

4 Conclusions

It was proposed the semi-Huber MRF model to construct
a novel algorithm for image segmentation. We verified
that this proposal has a satisfactory performance. Times
in execution were similar and visual segmentation results
were agree with those obtained from models reported in
other works. In the case of the Generalized Gaussian,
Welsh’s and Tukey’s Markov random fields, several tests
had to be made to find adequate parameter values for
each kind of image, since one has more degrees of free-
dom. While, for the semi-Huber MRF we obtained good
results with fewer tests because the parameter adjust-
ment is less complicated. One of the experiments pre-
sented was made on a geographical image because we
pretend an application on the analysis of this kind of
images, properly about hydrographic resources. In this
sense, the results are encouraging on this way.
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