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ABSTRACT. A regularized estimator for modulo π2  fringe orientation is presented in this 

work. As the technique requires to solve locally in the fringe pattern a simple linear system to 

optimize a regularized cost function, the global estimation of an orientation vector field is 

performed fast and easily. The performance of this technique is evaluated with synthetic and 

real fringe patterns. 

 

1. INTRODUCTION 

 

 It is widely known that fringe pattern analysis is a simple task if a proper carrier 

frequency is introduced. However, in many optical tests the introduction of a carrier frequency 

is not possible and the automatic analysis becomes a non-trivial work. In recent years, it has 

been evidenced the importance of the modulo π2  fringe orientation for phase recovery [1,2], 

however, modulo π2  fringe orientation estimation has resulted difficult to realize
 
[3,4]. 

 In fringe analysis it is usual to define the image of a fringe pattern as 
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where L is the set of valid sites in the image, )(rφ  represents the phase to be recovered, terms 

)(0 rI  and )(1 rI  represent the background illumination and the varying contrast respectively. 

As these two terms are low frequency functions, for practical purposes they can be considered 

constants. Having in mind these considerations or even better eliminating these terms by 

means of a normalization procedure, i. e., supposing [ ])(cos)( rr φ≈I , the modulo π  fringe 

orientation angle can be calculated with 
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Due to sign ambiguity of the gradient (r)I∇  with respect to fringe orientation, the 

direct use of the modulo π  fringe orientation is not proper for analyzing closed fringes. 

 The proposal of Larkin et al. [1] to demodulate closed fringes is founded in the 

investigation of a natural and isotropic extension to more than one dimension of the Hilbert 

transform. In the work of Larkin et al., it is presented a two-dimensional transform that 

involves a spiral phase spectral operator and an orientational phase spatial operator: 
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 In the work reported by Servín et al.
 
[2], the utility of fringe orientation is evidenced 

when the so-called n-dimensional quadrature operator is defined: 
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where, in the two-dimensional case 
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 Quiroga et al. [4] proposed the use of the regularized phase-tracking technique for 

retrieving the modulo π2  fringe orientation from the modulo π  fringe orientation, however it 

is required to solve a non-linear system in order to optimize a local cost function.  

 

2. REGULARIZED ESTIMATOR FOR MODULO 2ππππ FRINGE ORIENTATION 

 

 In this work we present a regularized technique to estimate a smooth vector field p(r)  

having the fringe orientation. The estimation problem presented here is formulated in the 

following way: find a smooth vector field ],[ yx nn=n(r)  orthogonal to 

)](sin(),([cos rrψ(r) ππ θθ= . As p(r)  is parallel to ψ(r) , then p(r)n(r) ⊥ . Once the vector 

field n(r)  is estimated, we assume that ],[ xy nn−=p(r)  or ],[ xy nn −=p(r) , and its modulo 

π2  orientation can be easily computed. 

 Estimation of n(r)  must be carried out having in mind that 

( )L∀=⋅ rn(r)ψ(r) ,0 .     (6) 

The estimated vector field n(r)  is regularized to restrict its smoothness in order to avoid 

orientation ambiguity. The regularized estimator for fringe orientation proposed here is 

designed considering that in a small region Γ  around a coordinate siter , the fringes point to 

the same direction. The proposed regularized cost function that takes into account the above-

mentioned considerations is 
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where )~,~(~ yx=r  represent the local coordinates in the region Γ , )~(rxn  and )~(ryn  represent 

the already computed components of the estimated vector field around site r , )~(rs  is an 

indicator that equals 1 if the site has already been estimated and 0 otherwise. The so-called 

regularization parameter µ  together with the size of region Γ  control the smoothness of the 

estimated vector field. To optimize the cost function (7) at every site L∈r  we just need to 

solve the simple linear system 

0nr =∇ )(U .      (8) 

 For estimating )(rn  we start by setting ( )Ls ∀= rr 0)( , and the process is carried out 

optimizing the cost function (7) at every site L∈r . Once a site r is visited to estimate )(rn , 

we set the indicator )(rs  equal to 1. The process is finished when all sites in L are visited. An 

advantageous characteristic of this estimation process is that equation (8) is a linear system, so 

the solution can be easily computed using a direct method. 

 

3. EXPERIMENTS 

 

 As cost function (7) includes already estimated values of )(rn , the estimation is path 

dependent, and better results can be obtained if smoothest or less problematic zones are 

processed first. This reasoning was applied by Ströbel [5] for phase unwrapping using a pixel 

queuing algorithm with a quality map. This pixel queuing algorithm was first adopted to be 

applied in the regularized phase-tracker by Villa et al. [6], using the amplitude modulation of 

squared grating deflectogram as the quality map. For our purpose, a good criterion is to follow 

a path that visits problematic sites of dark and bright fringe centers at last (because (r)I∇  is 



not well defined at this sites). Using Ströbel’s pixel queuing algorithm, a proper quality map 

for this criterion is )(rI∇ . 

 Other important detail is the first estimation in the fringe pattern. As in the first 

estimation there are not already estimated values of ],[ yx nn=n(r) , the equation (8) represent 

a homogeneous system, so in the experiments we propose in the first site ],[ xy ψψ−=n(r) . 

 The performance of the proposed technique is illustrated by two experiments. The first 

is a numerical estimation with a synthetic fringe pattern of size 200200×  with 256 gray 

levels, shown in Figure 1(a). The image was corrupted with gaussian additive noise with a 

signal to noise ratio of –5.2 dB. Theoretical and estimated modulo π2  fringe orientation are 

shown in Figures 1(b) and 1(c) respectively. In this experiment we used the values 1=µ  and 

77×=Γ . The time employed for this estimation was 4 seconds using Matlab in a 3 GHz 

Pentium 4 based computer. 

 

 
(a)    (b)    (b) 

Figure 1. (a) Synthetic fringe pattern corrupted with gaussian additive noise. Gray level codification of (b) 

theoretical and (c) estimated modulo 2π fringe orientation. Black represents -π rad and white π rad. 
 

 An interferometric fringe pattern of size 450450×  is shown in Figure 2(a). The 

estimated modulo π2  fringe orientation is shown in Figure 2(b). The computed phase using 

Larkin’s et al. operator is shown in figure 2(c). In this case we used the values 5.0=µ  and 

1313×=Γ . The total time employed for this estimation was about 28 s. 

 

 
(a)    (b)    (b) 

Figure 2. (a) Real interferometric fringe pattern. (b) Estimated modulo 2 π fringe orientation. (c) Gray level 
codification of the computed phase using Larkin’s et al. operator. Black represents - π rad and white π rad. 

 

 



3. CONCLUSIONS 

 

 As shown, the technique presented here is a simple and fast manner for estimating the 

modulo 2π fringe orientation, and it can be applied to many kinds of fringe patterns. 

 

Aknowledgments. The authors thank to the Programa de Mejoramiento del Profesorado 

(PROMEP-SEP) México. 

 

REFERENCES 
 

[1]  K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. 

General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862-1870 (2001). 

[2]  M. Servín, J. A. Quiroga, and J. L. Marroquín, “General n-dimensional quadrature transform and its 

application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 935-934 (2003). 

[3]  X. Zhou, J. P. Baird, and J. F. Arnold, “Fringe orientation estimation by use of gaussian gradient-filter and 

neighboring-direction averaging,” Appl. Opt. 38, 795-804 (1999). 

[4]  J. A. Quiroga, M. Servín, and F. Cuevas, “Modulo 2π  fringe orientation angle estimation by phase 

unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524-1531 (2002). 

[5]  B. Ströbel, “Processing of interferometric phase maps as complex-valued phasor images,” Appl. Opt. 35, 

2192-2198 (1996). 

[6]  J. Villa, J. A. Quiroga, and M. Servín, “Improved regularized phase-traking technique for the processing of 

squared-grating deflectograms,” Appl. Opt. 39, 502-508 (2000). 


