UNIVERSIDAD AUTÓNOMA DE ZACATECAS

MATRIZ DE TRANSFERENCIA DE COLOR DEL SISTEMA CÁMARA-PANTALLA DE SMARTPHONES.

Ing. Jorge Alberto Ríos Viramontes

Tesis de Maestría

presentada a la Unidad Académica de Ingeniería Eléctrica de acuerdo a los requerimientos de la Universidad para obtener el título de

MAESTRO EN CIENCIAS DE LA INGENIERÍA

Director de tesis: Dr. Iván Moreno Hernández

UNIDAD ACADÉMICA DE INGENIERÍA ELÉCTRICA

Zacatecas, Zac., Noviembre del 2016

RESUMEN

El sistema cámara-pantalla en los teléfonos móviles cada vez tiene un rol más importante, pues la calidad de las imágenes capturadas y visualizadas en el mismo dispositivo es primordial para los usuarios. Varias tecnologías han sido desarrolladas para mejorar la calidad de las imágenes presentadas en las pequeñas pantallas de los teléfonos móviles, y también se han realizado trabajos de investigación en los que se evalúa la calidad de las imágenes desplegadas en dichas pantallas. Pero hasta ahora, no se ha reportado en la literatura una matriz de transferencia de color del sistema cámara-pantalla para teléfonos móviles. En esta tesis, se llevaron a cabo una serie de mediciones de color en varias pantallas de teléfonos móviles, y directamente en la escena real fotografiada por sus cámaras embebidas. Las coordenadas de color CIELAB medidas se analizaron con el fin de elaborar y proponer una Matriz de Transferencia de Color (M), que relacionara los colores mostrados en la pantalla con los colores de la escena original fotografiada. Para lo cual se propusieron dos modelos de matriz M uno lineal y uno cuadrático, siendo el lineal el que se analizó más a detalle. La experimentación se desarrolló en condiciones de iluminación controlada, y los datos obtenidos durante las mediciones se analizaron en busca de correlación entre las variables involucradas y comportamientos matemáticos. Finalmente el rendimiento de la M se probó, a través de una comparación entre lo calculado por la M y los datos obtenidos en las mediciones en laboratorio.

ABSTRACT

The camera-screen system in mobile phones increasingly has a more important role because the quality of the images captured and displayed on the same device is essential for users. Several technologies have been developed to improve the quality of the images presented on the small screens of mobile phones, and also research on the quality assessment of images displayed on such screens has been conducted. But so far, it has not been reported in the literature a color transfer matrix for the camera-screen system of mobile phones. In this thesis, we carried out a series of color measurements on several screens of mobile phones, and directly in the actual scene photographed by their embedded cameras. The CIELAB color coordinates measured were analyzed in order to develop and propose a Color Transfer Matrix (M), linking the colors displayed on the screen with the colors of the original scene photographed. A linear model and a quadratic model of M matrix were proposed, but the linear one was analyzed more in detail. The experiment was developed under controlled illumination, and the data obtained in measurements were analyzed looking for correlation between the variables involved and mathematical behaviors. Finally performance of M was tested, through a comparison between the data computed by M and the data obtained in laboratory measurements. Dedicada a mi hijo Gabriel Alberto un motor en mi vida, a mi madre Amalia Viramontes un ejemplo de trabajo y amor, y a mi padre Filiberto Ríos gracias por las bendiciones que recibo siempre desde donde estes.

Agradecimientos

Agradezco la valiosa colaboración del Dr. Iván Moreno Hernández de la Unidad Académica de Fisica de la UAZ por sus recomendaciones y apoyo académico, moral y económico en el desarrollo del presente trabajo.

A CONACYT por las becas de manutención y mixta que me otorgó como becario número 297344, con las cuales pude desarrollar mis estudios de maestría.

Al Dr. Tsung-Xian Lee investigador y docente del Graduate Institute of Color and Illumination Technology (GICIT), perteneciente a la National Taiwan University of Science and Technology (NTUST), por su disponibilidad y apoyo para la realización de mediciones experimentales en sus laboratorios.

A docentes y personal administrativo del programa de posgrado en ciencias de la ingeniería. Y muy en especial a mi comité de sinodales, Dra. Ma. Auxiliadora Araiza Esquivel, Dr. Carlos Alberto Olvera Olvera, Dr. Tonatiuh Saucedo Anaya y al Dr Raúl Alberto Reyes Villagrana, por su apoyo y tiempo invertido.

Contenido General

			Pa	g.
Re	esume	n		i
Al	ostrac	t		ii
Li	sta de	figuras		iii
Li	sta de	tablas		xi
1	Intr	oducció	n	1
	1.1	Breve l	nistoria del color	1
	1.2	Antece	dentes y estado del arte.	4
	1.3	Plantea	miento del problema y motivación.	6
	1.4	Hipóte	sis	9
	1.5	Objetiv	OS	10
		1.5.1	Objetivo general.	10
		1.5.2	Objetivos específicos	10
	1.6	Metas.	· · · · · · · · · · · · · · · · · · ·	10
2	Fun	dament	ación teórica	12
	2.1	Luz y v	risión.	12
		2.1.1	La luz.	12
		2.1.2	Radiometría y fotometría.	12
		2.1.3	Fuentes de luz.	13
		2.1.4	La luz del sol y luz de día.	13
		2.1.5	El ojo humano.	14
		2.1.6	Sensibilidad del ojo humano.	15
	2.2	Color.	· · · · · · · · · · · · · · · · · · ·	16
		2.2.1	Colorimetría.	16
		2.2.2	CIE	17
		2.2.3	Visualización de información colorimétrica.	19
		2.2.4	Mediciones colorimétricas.	21
		2.2.5	Coordenadas de color de superficies.	21
	2.3	Reprod	ucción digital del color.	22
		2.3.1	Tricromatricidad	22

vi

	2.4	2.3.2 2.3.3 2.3.4 Concep 2.4.1 2.4.2 2.4.3	Resolución espacial y color.23Captura de la imagen.24Dispositivos de visualización de imagen.26otos matemáticos.27Modelos matemáticos.27Regresión lineal múltiple.28Permutaciones.28			
3	Exp	eriment	tación y procesamiento de datos			
	3.1	Experin	mentación preliminar			
		3.1.1	Experimento 1: Mediciones con espectrofotómetro			
		3.1.2	Experimento 2: Mediciones con colorímetro imaging			
	3.2	Experie	mentación final			
		3.2.1	Equipo de medición			
		3.2.2	Experimento 1: Geometría de medición 0/45			
		3.2.3	Experimento 2: Geometría de medición 45/0			
	3.3	Cálculo	o de la matriz de transferencia de color (M)			
		3.3.1	Modelo lineal			
		3.3.2	Modelo cuadrático			
	3.4	Desem	peño de los modelos de M 51			
		3.4.1	Error local e			
		3.4.2	Error global eG			
		3.4.3	Error global para cada nivel de brillo eB			
	3.5	Primer	os pasos para generalizar M			
		3.5.1	Ajuste polinomial			
		3.5.2	Ajuste serie de Fourier			
		3.5.3	Error de los ajustes			
		3.5.4	Diferencias de color			
4	Aná	lisis de	resultados y discusión			
	4.1	Análisi	s de la reproducción de color de los celulares			
	4.2	Análisi	s del desempeño de los modelos			
	4.3	La M g	general propuesta			
		4.3.1	Análisis del error de los ajustes			
Co	Conclusiones					
Ap	Apéndices					
	Apér	ndice A:	Códigos Mathcad			

Pag.	
------	--

Apéndice B: Apéndice C:	Códigos Matlab	81
I	iluminante A	95
Apéndice D:	Posters presentados en el "College on Optics and Energy" y en la "Latin American Optics and Photonics Conference"	00
Referencias		02

Lista de figuras

Figur	a	Pag.
1.1	Teléfonos móviles con cámara	7
1.2	Procedimiento planteado en los objetivos específicos para encontrar la M	9
2.1	Espectro electromagnético y luz visible	12
2.2	El ojo humano.	14
2.3	Curvas de respuesta fotométrica de la visión humana	15
2.4	Iluminantes estandar CIE: A, B, C y D65(linea segmentada).	17
2.5	Representación diagramática de cuatro de las geometrías de iluminación y medi- ción recomendadas por la CIE	18
2.6	Ejemplo de sistema tridimensional de color	20
2.7	Ejemplo de diagrama de cromaticidad CIE u'v'	21
2.8	Visión general del CCI	23
2.9	Ejemplo de captura del SVH	24
2.10	Patrón de bayer de sensores de color R,G,B	25
2.11	Comparación de pantallas de diferentes tecnologias.	27
3.1	Fuente de luz iluminando las muestras de color	30
3.2	Paleta con seis parches de colores	30
3.3	Espectrofotómetro Ocean Optics USB 2000	31
3.4	Medición de cromaticidad de las muestras de color (colores de referencia)	32

T '			
H1	σ_1	1r	а
1 1	s٩	*1	u

•	
- 1	v
	•

Figur	a	Pag.
3.5	Muestra de cómo se tomó la fotografía de las muestras de color con el teléfono celular.	. 33
3.6	Diferencia visual de los colores originales y los reproducidos en la pantalla del celular.	. 33
3.7	Colorímetro imaging Radiant Zemax ProMetric G	. 35
3.8	Pantalla del software Radiant Zemax ProMetric 10.7.20. Como ejemplo se mues- tran 24 mediciones de color representadas por circulos en cada uno de los 24 parches de color mostrados.	. 35
3.9	Paleta de parches de colores X-Rite ColorChecker Digital SG	. 36
3.10	Muestra de comó se tomó la medición de referencia de los parches de colores del CCDSG con el colorímetro imaging.	. 37
3.11	Muestra de comó se tomó la fotografía de los parches de colores del CCDSG con el celular.	. 38
3.12	Muestra de la medición de color con el colorímetro imaging de los parches de colores del CCDSG reproducidos en la pantalla del celular.	. 38
3.13	Imágenes de la reproducción de colores en la pantalla de los 2 celulares para los 6 modos de captura descritos en la Tabla 3.1.	. 39
3.14	Cabina de iluminación Macbeth SpectraLight III	. 40
3.15	Dos muestras de color iluminadas con diferente fuente de luz: con (a) iluminante A y (b) iluminante D65	. 40
3.16	Paleta de colores X-Rite ColorChecker.	. 41
3.17	Analizador de uniformidad de luminancia y cromaticidad TOPCON UA-1000A.	. 41
3.18	Ejemplo de interfaz de Software UA-1000 Standard Edition. (a) Vista Live View en el software sirve para ver en tiempo real lo que se va a medir y (b) Celular u objetivo de medición.	. 42
3.19	Pruebas de homogeneidad de los iluminantes dentro de la cabina SpectraLight.(a) Posicionando el UA-1000A, (b) Paleta blanca dentro de la cabina, (c) Imagen tomada por el UA-1000A y (d) Vista de todo el arreglo experimental.	. 43

Figura

3.20	Medición del color checker con colocación en ángulo de 45° del colorímetro. (a) Medición del color checker de referencia con el iluminante D65 (luz del laborato- rio encendida), (b) Medición del color checker de referencia con el iluminante A (luz del laboratorio apagada).	43
3.21	Medición de colores de la pantalla a cada celular.	44
3.22	Medición de la pantalla a cada celular, con iluminante de cabina apagado	45
3.23	Colocación del colorímetro y color checker en geometría 45/0. (a) Medición 45/0 del color checker con el iluminante A, (b) Medición 45/0 del color checker con el iluminante D65.	46
3.24	Medición 45/0 de las pantallas de los celulares	47
3.25	Diagrama de cromaticidad CIE u'v' que muestra la gama de colores de referencia medidos. Es decir, los 24 colores del color checker medidos en 45/0 directamente con el colorímetro.	47
C.1	Diagramas de cromaticidad de las mediciones del Iphone6, iluminante A del Experimento final 2: Geometría de medición 45/0.	95

Pag.

Lista de tablas

Tabla		Pag.
3.1	Configuración del modo de captura de los celulares en el experimento preliminar 2.	37
4.1	Promedios de las diferencias de color en la reproducción de colores, Experimento preliminar 2: Mediciones con colorímetro imaging. La diferencia de color $\overline{\Delta E_{ab}}$ se define en la sección 3.5.4.	61
4.2	Promedios de las diferencias de color en la reproducción de colores, Experimento final 1: Geometría de medición 0/45.	62
4.3	Promedios de las diferencias de color en la reproducción de colores, Experimento final 2: Geometría de medición 45/0.	63
4.4	Desempeño de los modelos de M para el Experimento preliminar 2: Mediciones con colorímetro imaging.	63
4.5	Desempeño de los modelos de M con el iluminante A para el Experimento final 1: Geometría de medición 0/45	64
4.6	Desempeño de los modelos de M con el iluminante D65 para el Experimento final 1: Geometría de medición 0/45.	65
4.7	Desempeño de los modelos de M con el iluminante A para el Experimento final 2: Geometría de medición 45/0	66
4.8	Desempeño de los modelos de M con el iluminante D65 para el Experimento final 2: Geometría de medición 45/0.	67
4.9	Coeficientes de la M general para el iluminante A	69
4.10	Coeficientes de la M general para el iluminante D65	70
4.11	Porcentaje de error de ajuste RMSE normalizado de los elementos de la M general para el iluminante A	71

Tabla		Pag.
4.12	Porcentaje de error de ajuste RMSE normalizado de los elementos de la M general para el iluminante D65	71
C.1	Valores de la referencia iluminante A para el Experimento final 2: Geometría de medición 45/0.	96
C.2	Valores Iphone6 mínimo brillo iluminante A para el Experimento final 2: Ge- ometría de medición 45/0	97
C.3	Valores Iphone6 medio brillo iluminante A para el Experimento final 2: Geometría de medición 45/0	98
C.4	Valores Iphone6 máximo brillo iluminante A para el Experimento final 2: Ge- ometría de medición 45/0	99

xii

Capítulo 1

Introducción

1.1 Breve historia del color.

En el espectro electromagnético, la luz es un pequeño rango de ondas electromagnéticas que el ojo puede detectar. La luz de diferentes longitudes de onda produce diferentes percepciones de color. Las longitudes de onda más largas producen la percepción del rojo, mientras que las más cortas producen la percepción del violeta. Por muchos siglos, la humanidad ha estado muy interesada en el color, la sensación de color es producida por la estimulación física de detectores de luz, llamados conos, en la retina humana [1].

La ciencia del color moderna, vio su nacimiento en el siglo XVII. Antes de entonces, era comúnmente pensado que la luz blanca representaba la luz en su forma pura y que los colores eran modificaciones de la luz blanca. Para entonces ya era bien conocido que los colores podían ser producidos haciendo pasar luz blanca a través de prismas triangulares de vidrio. En el primer reporte publicado por Isaac Newton de su "Nueva Teoría de los Colores", describe como en 1671, él compro un prisma para tratar el célebre "Phaenomena of colours".

Sin embargo la historia enfatiza que Newton no descubrió el espectro prismático, más bien su contribución radico en el uso analítico de prismas adicionales. En su obra "Opticks", publicada por primera vez en 1704, sentó las bases precursoras de los que más tarde se llamarían, diagramas de cromaticidad, los cuales muestran cuantitativamente lo que resulta de mezclar ciertos colores [2].

Después del experimento de Newton, la siguiente contribución importante para entender el color fue cuando Mariotte, en el año 1717 dijo que tres colores eran suficientes para producir cualquier color cuando se hacia la combinación apropiada. Este concepto fue introducido por Palmer en 1777, en su "Theory of Colours and Vision". En 1802, Thomas Young refino la teoría tricromatica de color, aunque dicha teoría era satisfactoria, pero no explicaba varios fenómenos.

Algunos años más tarde Hermann Von Helmholtz retomó y mejoro las ideas de Young, añadiendo más detalles basándose en experimentaciones. Para este tiempo, entre 1877 y 1881 otros investigadores como, Peirce y Rayleigh se encontraban realizando interesantes experimentos ópticos de color. A Edwald Hering se le atribuye el haber introducido el termino de colores oponentes en su teoría propuesta en 1878.

De manera casi simultánea con los trabajos de Helmholtz, en 1861, James Clerk Maxwell estudio la percepción del color y realizó un experimento para producir una imagen a todo color, con el cual comprobó la teoría de Young-Helmholtz.

Es entonces importante identificar el hecho de que, la percepción de color no es sólo un mecanismo físico, sino también un mecanismo fisiológico y psicológico.

En 1922, la Sociedad Óptica Americana (OSA por sus siglas en inglés) público un extenso reporte, donde W.D. Wright describía la evolución de las investigaciones que llevaron al sistema o espacio de color CIE 1931, también conocido como CIE XYZ 1931, desarrollado por la Comisión Internacional de Iluminación (CIE por sus siglas en francés), con el cual se definieron matemáticamente con precisión tres colores primarios a partir de los cuales pueden crearse todos los demás.

Sin embargo, se observó que un pequeño desplazamiento en el sistema CIE XYZ, no producía el mismo cambio en el color percibido en cualquier punto o cualquier dirección de cambio sobre el diagrama de cromaticidad. Por lo que se comenzaron a realizar modificaciones para lograr uniformidad en el espacio de color, y surgieron varios sistemas en los cuales se realizaban transformaciones de diferentes tipos.

La teoría "retinex" desarrollada por Edwin Land y descrita por Kaiser y Boynton en el año 1966, es un modelo más reciente donde Land realizó una modificación al experimento de Maxwell, de tal manera que podía proyectar una escena a todo color, únicamente con dos colores. El experimento de Land puede explicar nuestra capacidad para observar colores sin distorsiones bajo una amplia variedad de condiciones de iluminación, este importante proceso es conocido como adaptación cromática [1].

En 1976, la CIE recomendó el espacio de color CIELAB (una version mejorada del CIE XYZ), principalmente para su uso en las industrias plástica, textil y de pinturas [1].

Ya más recientemente en 1996, Xuemei Zhang y Brian A. Wandell del Departamento de Psicología de la Universidad de Stanford en California, publicaron un artículo donde describen una extensión espacial de la métrica de color CIELAB [3], la cual es de utilidad para la medición de los errores de reproducción de color de imágenes digitales. El S-CIELAB determina el error de color de las imágenes digitales mediante un filtraje espacial usando un método que separa los canales de color y después los convierte a la representación de CIELAB.

Los resultados de dicho artículo indicaron que el error en la reproducción de color medido por el S-CIELAB en imágenes con regiones de patrones de colores es más significativo que el medido por el CIELAB estándar; y que en imágenes con regiones uniformes de color, el error calculado es igual de significativo que con las fórmulas de CIELAB estándar.

1.2 Antecedentes y estado del arte.

A partir de la propuesta de Xuemei Zhang y Brian A. Wandell [3], otros investigadores del área comenzaron a utilizar el método S-CIELAB. Es cuando en 2003, Garret M. Johnson y Mark D. Fairchild, del Laboratorio Munsell de Ciencias del Color y del Centro Chester F. Carlson de Ciencias de la Imagen, pertenecientes al Instituto de Tecnología de Rochester, publican un artículo en el cual presentan una visión general del filtrado espacial combinado con la recomendación CIEDE2000, para asistir a la recomendación CIE TC8-02 en la evaluación e implementación de una métrica de diferencia de color en imágenes [4].

En 2009, con la idea de que las fórmulas de diferencia de color, por ejemplo CIELAB, que han sido empleadas para evaluar la calidad de color entre un estándar y una imagen reproducida, son insuficientes en la evaluación de la calidad de imágenes, Jang Jin Yoo, Guihua Cui y M. Ronnier Luo del Departamento de Ciencias del Color de la Universidad de Leeds (UL) en el Reino Unido, publicaron un artículo donde llevaron a cabo una serie de experimentos psicofísicos, usando el método de juicio categórico para desarrollar una Métrica de Naturalidad de Color (CNM), para evaluar la naturalidad de colores en pantallas de teléfonos móviles [5].

Esos experimentos incluyeron juicios de naturalidad de color y juicios de diferencia de calidad de imagen. A través de lo anterior, las métricas fueron calibradas y el experimento posterior las puso a prueba. Dos tipos de CNM fueron propuestas, la CNM de decaimiento no lineal, y la CNM de decaimiento lineal. En las CNMs, se asumió que un objeto familiar en una imagen juega un papel crítico para juzgar la naturalidad de color de toda la imagen. A través de una comparación de desempeño entre los modelos de objeto, fue seleccionado un objeto crítico en una escena y con el modelo de objeto crítico, se predijo la naturalidad de color de toda la imagen.

En 2012, Rui Gong, Haisong Xu, Binyu Wang del Laboratorio de Instrumentación Óptica Moderna de la Universidad Zhejiang (UZJ) y M. Ronnier Luo de la UL, publicaron los resultados de su artículo en el cual evaluaron la calidad de imagen de dos tipos de tecnologías de pantallas de teléfonos inteligentes (smart-phone), en condiciones de iluminación interior y exterior [6]. Su experimentación fue psicofísica (subjetiva) y consideró aspectos de la calidad de la imagen como la naturalidad, colorido, brillo, contraste y nitidez.

Los autores se basaron en la consideración de que la principal diferencia entre la iluminación interior y exterior es el nivel de iluminación, el cual es el factor que significativamente afecta la percepción visual calidad en la imagen mostrada en las pantallas. Los resultados mostraron una tendencia oponente entre la naturalidad y el colorido, es decir, que el exceso de colorido degrada el atributo de naturalidad.

En resumen, determinaron que lo factores benéficos para obtener mejor calidad de imagen en pantallas de teléfonos inteligentes eran el poder de resolución (Pixels per Inch), luminancia pico, el CCT (Correlated Color Temperature) y la gama de colores.

En 2013, nuevamente Rui Gong y Haisong Xu de la UZJ, dan a conocer los resultados de su artículo sobre el impacto de los parámetros de apariencia en la calidad de imagen percibida en pantallas de teléfonos móviles [7]. Los autores utilizando procedimientos similares a sus experimentos realizados en su anterior trabajo [6], esta vez, a partir de la comparación de varias imágenes manipuladas, llegan a la conclusión de que puede ser alcanzada una mejor calidad de imágenes, optimizando los parámetros de apariencia de imagen a alta luminosidad, cromaticidad y frecuencia de distribución de iluminación adecuadas, matiz imparcial y alta resolución de pixeles.

Lo que verificaron con análisis de la correlación de Pearson. Como trabajo futuro los autores mencionan su enfoque en el modelado de los atributos de calidad de imagen individuales con los parámetros físicos de pantallas o imágenes.

A finales del año 2013, se publicó un trabajo significativo sobre color y pantallas de teléfonos móviles, que motivo la presente tesis [8] realizado por: Felix Kimme y Peter Brick de Opto-Semiconductores de OSRAM, en Regensburg Alemania; por Sangam Chatterjee del Departamento de Física de la Universidad-Philipps Marburg en Alemania; y por Tran Quoc Khanh del Instituto de Diseño Electromecánico de la Universidad Técnica de Darmstadt también en Alemania. El problema consiste en que los diodos emisores de luz (LEDs) de los teléfonos móviles modernos emiten luz con un espectro con poco color rojo y cian (azul), sin embargo la gama de colores de las pantallas se ha incrementado en años recientes. Los autores investigaron la discrepancia en la reproducción de color de los teléfonos inteligentes. Basándose en el modelo de apariencia de color CIECAM02, introducen una métrica para juzgar la reproducción de color de teléfonos móviles bajo iluminación de flash LED.

En [8] se estableció un método de evaluación para comparar la apariencia visual de una escena bajo varias condiciones de iluminación con la reproducción de dicha escena. Para facilitar una comparación de las mediciones, el método de evaluación se basó en los datos crudos de dos cámaras de prueba y un checador de color (Digital Color Checker SG). Para reducir la variación de color entre lo percibido y lo reproducido, ellos presentaron espectros de flash LED optimizados usando un solo LED y doble LED con temperatura de color ajustable.

Adicionalmente investigaron las características comunes del espectro de flash LED, con el que obtuvieron buenos resultados, identificaron las partes espectrales que influencian de mayor manera en la reproducción de color de la cámara y mostraron las partes espectrales que no contribuyen o que inclusive resultan en una pobre reproducción de color. Finalmente en su trabajo compararon la eficiencia de su espectro de flash LED optimizado con un flash LED estándar.

1.3 Planteamiento del problema y motivación.

La cámara digital integrada en los teléfonos móviles Figura 1.1, cada vez tiene un rol más importante pues la calidad de las imágenes capturadas es primordial para los usuarios. Algunas tecnologías han sido desarrolladas para mejorar la calidad de las imágenes presentadas en las

Figura 1.1 Teléfonos móviles con cámara.

pequeñas pantallas de los teléfonos móviles, y se han desarrollado trabajos de investigaciónen en los que se evalúa la calidad de las imágenes percibidas en dichas pantallas [5] [6] [7].

La mayoría de esos estudios se concentran en la correlación que tienen diferentes atributos de las imágenes, o el impacto de algunos de ellos en forma individual sobre la calidad en general de las imágenes reproducidas. Algunos de estos atributos son: Naturalidad, colorido, brillantes, contraste, nitidez, claridad, preferencia, entre otros [7].

Los grandes beneficios que ofrece la cámara de los teléfonos móviles como un dispositivo de fácil y rápido acceso permite tomar fotografías y video en tiempo real, las cuales se pueden compartir en cualquier momento que se desee, es por ello que se están realizando labores de investigación en diferentes campos de la ciencia donde se aprovechan estas ventajas que brindan los teléfonos móviles y sus cámaras embebidas.

Entre las aplicaciones que se le estan dando a los teléfonos móviles destacan su cada vez mayor uso en la telemedicina y análisis de muestras de orina [9][10]; y como plataformas portables de análisis químicos [11], se hacen análisis colorimétricos en muestras de agua y arena en lugares remotos donde es común que estén contaminadas [12] [13] [14]; también se usan en aplicaciones como la detección de ADN en tiempo real [15], o en la agricultura para

monitorear el desarrollo de plantas mediante su color[16], entre otras muy variadas aplicaciones que ya se le dan y que se le podrían dar a los celulares, como por ejemplo analizar la calidad de productos alimenticios a partir de su color lo que tiempo atrás se realizaba con otras tecnologías[17]. En todas estas aplicaciones es importante conocer las propiedades fundamentales del proceso de reproducción de color.

En esta tesis estudiamos la reproducción de color de una imagen en la pantalla de celular que se captura mediante la cámara fotográfica del mismo. En particular, emprendemos la busqueda de una matriz de transferencia de color (M), que relacione matemáticamente los colores de la escena real, con los mostrados en la pantalla. Actualmente no se ha reportado en la literatura una M para modelar los colores reproducidos en la pantalla del celular de una fotografía tomada con su cámara embebida.

La principal motivación, se debe a que una herramienta matemática de este tipo sería de gran utilidad, por ejemplo, para el diseño de nuevas aplicaciones con teléfonos móviles, pues se pretende que contemple aspectos teóricos de carácter fundamental de la transferencia de color, que contribuyan al desarrollo de la ciencia y tecnología de reproducción de color en dispositivos móviles con cámara. No se deja de lado la utilidad que tendría la M como medida de la calidad de reproducción de colores en los celulares, como indicativo para quienes busquen adquirir un nuevo celular con las mejores características, o con ciertas características en la capacidad de reproducción de colores para alguna aplicación futura en específico.

Con base en lo antes expuesto se plantean las preguntas concretas:

- ¿Cómo será la relación matemática entre las coordenadas de color de la escena real y las de la imagen reproducida en la pantalla del celular?
- ¿Existe una matriz de transferencia de color, para el sistema óptico cámara-pantalla de los teléfonos móviles?
- ¿Cómo se puede cuantificar la similitud de color de una fotografía tomada con el teléfono celular, reproducida en la pantalla del mismo teléfono, respecto a la escena real?

- 4. ¿Es el espacio de color CIELAB el indicado para medir la diferencia de los colores en la escena real y en la pantalla del celular?
- 5. ¿Qué cantidades (variables) fotométricas serán las que se deban tomar en cuenta para construir la M?
- 6. ¿De qué forma la iluminación del ambiente al momento de tomar la fotografía afectará la similitud entre los colores que capture la cámara del celular, y los reproducidos en la pantalla?

1.4 Hipótesis.

Mediante una Matriz de Transferencia de Color (M), es posible representar matemáticamente la relación de los colores de la escena (objeto real), con los colores desplegados en la pantalla del teléfono móvil con cámara.

Figura 1.2 Procedimiento planteado en los objetivos específicos para encontrar la M.

1.5 Objetivos.

1.5.1 Objetivo general.

Proponer una Matriz de Transferencia de Color (M), que sirva para modelar la reproducción de color del sistema combinado de las cámaras de teléfonos celulares y sus pantallas.

1.5.2 Objetivos específicos

- Investigar en la literatura los trabajos realizados con anterioridad que tengan alguna relación al tema tratado, principalmente lo referente a teoría del color y teoría de visión humana.
- Realizar las mediciones colorimétricas de punto por punto para diversos smartphones mediante el uso de un espectrómetro y algún sistema de cómputo que permita procesar y analizar los datos obtenidos Figura 1.2.
- Realizar las mediciones cromáticas de punto por punto para diferentes smartphones mediante un colorímetro imaging Figura 1.2.
- Proponer en base a un estudio y análisis de resultados experimentales una matriz de transferencia de color que con menor grado de error describa la reproducción de color en los teléfonos móviles con cámara.

1.6 Metas.

- Experimentar en laboratorio tomando fotografías con diversos teléfonos móviles, con cámaras y pantallas de diferentes tecnologías.
- Analizar los datos obtenidos con un método numérico adecuado, para evaluar la reproducción de color y para buscar una matriz de transferencia de color.
- Proponer una matriz de transferencia que modele el comportamiento de la reproducción de color en los teléfonos móviles con cámara.

• Probar el desempeño de la matriz propuesta, por medio de la utilización de figuras de mérito adecuadas para la validación de los modelos matemáticos usados.

Capítulo 2

Fundamentación teórica

2.1 Luz y visión.

2.1.1 La luz.

La luz es ese aspecto de energía radiante del cual un observador humano es consciente a través de sensaciones visuales que surgen de la estimulación de la retina del ojo por la energía radiante[18].

Figura 2.1 Espectro electromagnético y luz visible.

2.1.2 Radiometría y fotometría.

En radiometría, es medida la cantidad de intensidad radiante en un estimulo; por lo tanto los detectores que son usados deben ser sensibles a todas las longitudes de onda requeridas. Las mediciones son usualmente hechas en comparación con una fuente radiante estándar cuya intensidad de salida es conocida.

En fotometría, la cantidad de luz en un estimulo es comparada con la de un estimulo estándar, y la taza de las dos cantidades es la que provee la medición fotometrica. Las cantidades de luz pueden ser comparadas por evaluación visual. Pero es más común que dichas cantidades sean medidas usando fotodetectores con filtros que se aproximan a la sensibilidad espectral del ojo humano[19].

2.1.3 Fuentes de luz.

Los datos de fuentes de luz (fuentes de energía radiante) que son considerados de interés básico para los colorimetristas y trabajadores de la investigación en el ámbito visual son las distribuciones de potencia radiante espectral relativa. El rango espectral de estas distribuciones es usualmente confinado al rango del visible. Sin embargo, algunas distribuciones se extienden a las regiones del ultravioleta y el infrarojo cercano del espectro para permitir aplicaciones de colorimetría de materiales fluorescentes y para evaluar los efectos potenciales de la potencia radiante no visible, en parámetros radiométricos, fotométricos y colorimétricos[18].

2.1.4 La luz del sol y luz de día.

La fuente natural de energía radiante más importante es el sol. La luz del sol directa y la luz del sol dispersada por la atmósfera son componentes de la luz de día que juegan un papel clave en la ciencia del color[18].

Diversas mediciones espectroradiométricas de la luz de día han sido realizadas y reportadas en la literatura. Muchas de estas mediciones fueron hechas con aplicaciones en mente no conectadas directamente con la ciencia del color. Las distribuciones de potencia radiante espectral de la luz de día son datos básicos en astrofísica, investigación en materiales, arquitectura, fotobiología, ingeniería de iluminación, ingeniería de energía solar, investigación espacial, y otros campos. En las últimas dos décadas, se ha tenido un considerable progreso en el desarrollo de técnicas de medición que facilitan colectar grandes volúmenes de datos y su análisis a altitudes de nivel de tierra en diferentes ubicaciones del planeta así como en la parte exterior de nuestra atmósfera[18].

2.1.5 El ojo humano.

El ojo humano es un órgano que se aproxima a una forma esférica. La esfera tiene un radio de aproximadamente 12 mm con una protuberancia transparente hacia el frente. En la envoltura protectora, la cual preserva la forma del ojo, están insertados tres pares de músculos extrínsecos que mueven el ojo en su órbita, es decir, una cavidad en forma de cono apuntando ligeramente hacia el exterior relativo al plano central de la cabeza. Un cambio en el punto de fijación en el campo externo es seguido por un correspondiente cambio en la posición del ojo causado por una contracción y relajación coordinada de los músculos extrínsecos. La fijación de un punto externo es mantenida también cuando la cabeza se mueve. El intrincado mecanismo de los movimientos del ojo ha sido estudiado extensamente[18].

Figura 2.2 El ojo humano.

2.1.6 Sensibilidad del ojo humano.

Cuando la luz entra al ojo y llega a la retina, la energía es absorbida por los fotopigmentos ubicados en las puntas de los conos y los bastones. Esos conos y bastones son la parte trasera de la retina la cual está cerca de una capa negra conocida como coroide, la cual contiene cien millones de bastones y cinco millones de conos. El centro de la retina llamado fovea está vacío de bastones, pero aquí la densidad de conos es mayor.

La sensibilidad luminosa, se define como la razón entre la luminancia y la radiancia, y es una función de la longitud de onda de la luz. Esta sensibilidad es una constante para todos los niveles de luminancia. Para medir la eficiencia luminosa espectral del ojo, se debe encontrar un procedimiento para determinar cuando dos campos monocromáticos con diferentes colores tienen la misma luminancia. Después de esto usando el procedimiento adecuado, una igualación de luminosidad se realiza en un campo dividido con dos colores.

Cuando se hacen estas mediciones, se encuentra que hay dos diferentes sensibilidades luminosas para bajos y altos niveles de iluminación. Uno corresponde a la sensibilidad de los bastones y el otro a la de los conos. Una de estas dos sensibilidades del ojo, o funciones de luminosidad, es para visión de día, o fotópica, y la otra para visión de noche, o escotópica[1].

Figura 2.3 Curvas de respuesta fotométrica de la visión humana.

2.2 Color.

El color es ese aspecto de la percepción visual por el cual un observador puede distinguir diferencias entre dos campos de visión de estructura libre, del mismo tamaño y forma, tal como puede ser causado por diferencias en la composición espectral de la energía radiante involucrada en la observación. En este sentido, el término color es algunas veces referido como color percibido, para distinguirlo de color usado en el ámbito psicofísico[18].

2.2.1 Colorimetría.

La colorimetría es la rama de la ciencia del color dedicada, en primera instancia, con expresar numéricamente el color de un estímulo visual definido físicamente de tal manera que:

a) cuando es visto por un observador con visión de color normal, bajo las mismas condiciones de observación;

b) el estímulo tiene la misma especificación;

c) los números que comprenden la especificación son funciones continuas de parámetros físicos que definen la distribución de potencia radiante espectral del estímulo.

La colorimetría también se encarga de la especificación de pequeñas diferencias del color que un observador puede percibir cuando las diferencias en las distribuciones de potencia radiante espectral de un estímulo visual dado, son tales que una completa igualación de color no es observada. Para este propósito, son usadas formulas de diferencia de color, las cuales en las prácticas de colorimetría actuales son derivadas de una variedad de diferentes bloques de datos experimentales. El sistema colorimétrico de la CIE comprende los estándares esenciales y procedimientos de medición que son necesarios para hacer a la colorimetría una herramienta útil en la ciencia y la tecnología[18].

2.2.2 CIE.

La Comisión Internacional de Iluminación(CIE), esta encargada de la cooperación internacional y el intercambio de información en todo lo relacionado a la ciencia y arte de la luz e iluminación, color y vision, fotobiología y tecnología de imagen.

2.2.2.1 Iluminantes estándar.

Existen una gran diversidad de fuentes de iluminación las cuales ofrecen una gran variedad de distribuciones espectrales. Como resultado, a pesar de los procesos de adaptación del sistema visual, los objetos de color muestran cambios significativos en su apariencia de color cuando la luz con la que se le ilumina es cambiada. Para reducir la complejidad al tratar con esta situación, la CIE estandarizó diferentes tipos de iluminantes, los cuales son definidos en términos de su distribución espectral[19].

Figura 2.4 Iluminantes estandar CIE: A, B, C y D65(linea segmentada).

2.2.2.2 Geometrías de iluminación y medición.

La CIE recomienda para la medición de objetos de color las geometrías de iluminación y medición mostradas en la Figura 2.5, con el objetivo de evitar errores en las mediciones debido a reflexiones y brillos indeseados[19].

Figura 2.5 Representación diagramática de cuatro de las geometrías de iluminación y medición recomendadas por la CIE.

2.2.2.3 CIELAB.

También conocido como CIELAB 1976, es un espacio de color cuyo propósito es poder cuantificar pequeñas diferencias de color, usar las coordenadas de este sistema para especificar colores y sus diferencias representa una mejora en comparación a usar los valores triestimulo XYZ [2].

 L^* es la luminosidad, y tiene un rango de 0 a 100, y el parámetro a^* (que va de verde a rojo) y b^* (que va de azul a amarillo) son los dos componentes cromáticos del espacio de color el cual es perceptualmente uniforme, ya que la distancia euclidiana entre dos diferentes colores corresponde aproximadamente a la diferencia de color percibida por el ojo humano[17].

Las formulas para calcular las coordenadas L^* , a^* , b^* del sistema de color se encuentran a continuación en las ecuaciones 2.1, 2.2, 2.3 respectivamente. Así como la formula de la ΔE^*_{ab} empleada para calcular la diferencia entre dos colores, ecuación 2.4,[2].

$$L^* = \begin{cases} 116(\frac{Y}{Y_n})^{1/3} - 16 & si \quad \frac{Y}{Y_n} > 0.008856\\ 903.3(\frac{Y}{Y_n}) & si \quad \frac{Y}{Y_n} \le 0.008856 \end{cases}$$
(2.1)

$$a^* = 500 \left[\left(\frac{X}{X_n} \right)^{1/3} - \left(\frac{Y}{Y_n} \right)^{1/3} \right]$$
(2.2)

$$b^* = 200 \left[\left(\frac{Y}{Y_n} \right)^{1/3} - \left(\frac{Z}{Z_n} \right)^{1/3} \right]$$
(2.3)

$$\Delta E_{ab}^* = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$$
(2.4)

2.2.3 Visualización de información colorimétrica.

Un desafío que enfrentan los científicos del color de hoy en día, es el de producir e interpretar representaciones gráficas de datos de color; debido a que la representación visual de la luz es tridimensional, es difícil graficar esta representación en una página bidimensional. Y es incluso más difícil representar una medida dependiente de rendimiento visual como una función de coordenadas de color. A continuación se mencionan algunas propuestas.

Propuestas tridimensionales.- Un gran número de paquetes de gráficos computacionales ahora proveen facilidades para ayudar en la preparación de gráficas de perspectiva tridimensional. Comúnmente estos programas permiten variar el punto de vista entre otras características. Las tecnologías de pantalla de las computadoras proveen métodos mejorados de visua-lización de datos tridimensionales. Por ejemplo, ahora es posible producir animaciones que muestran gráficas que varían con el tiempo. Tales gráficas tienen el potencial para representar datos multidimensionales en una manera que es más comprensiva para un observador humano que las gráficas estáticas.

Diagramas de cromaticidad.- Una segunda estrategia para graficar datos de color es reduciendo la dimensionalidad de la representación de los datos. Una aproximación común es a través del uso de coordenadas de cromaticidad. Las coordenadas de cromaticidad son definidas

Figura 2.6 Ejemplo de sistema tridimensional de color.

de modo que cualquier par de luces con las mismas coordenadas relativas de color, tienen idénticas coordenadas de cromaticidad. Es decir, las coordenadas de cromaticidad de una luz son invariantes con respecto a la escala de intensidad. Esto es debido a que las coordenadas de cromaticidad tienen un grado de libertad menos que las coordenadas de color, estas pueden ser descritas por tan sólo dos números y graficadas en un plano. Se le llama diagrama de cromaticidad, a una gráfica de las coordenadas de cromaticidad. Un diagrama de cromaticidad elimina toda la información referente a la intensidad de un estímulo.

Funciones de la longitud de onda.- Los datos de color son frecuentemente representados como funciones de la longitud de onda. El espectro de longitud de onda parametriza un camino particular a través del espacio de color tridimensional. Las representaciones de longitud de onda son particularmente de utilidad en situaciones donde conociendo el valor de una función para un conjunto de estímulos monocromáticos, provee una completa caracterización del rendimiento. Las funciones de igualación de color por ejemplo, son usualmente graficadas como funciones de longitud de onda esto porque dichas funciones pueden ser usadas para predecir las coordenadas triestímulo de cualquier luz[20].

Figura 2.7 Ejemplo de diagrama de cromaticidad CIE u'v'.

2.2.4 Mediciones colorimétricas.

Frecuentemente es necesario medir las propiedades colorimétricas de un estímulo. Instrumentos especializados, llamados colorímetros, pueden medir las coordenadas triestímulo directamente. Estos instrumentos típicamente operan usando los mismo principios que los fotómetros con la excepción que ellos tienen tres filtros calibrados en lugar de uno. Cada filtro imita la forma espectral de una de las funciones de igualación de color. Los colorímetros son generalmente menos caros que los radiómetros y son entonces una opción atractiva cuando no se requieren datos de todo el espectro[20].

2.2.5 Coordenadas de color de superficies.

En muchas aplicaciones de colorimetría, es deseable describir las propiedades del color de objetos reflectivos. Una forma eficiente de hacer esto, es usando modelos lineales para describir las funciones de reflectancia total. Y otra posibilidad es especificando las coordenadas de color de la luz reflejada por la superficie bajo condiciones de iluminación estándar. Este método permite la asignación de valores triestímulo a superficies en una manera ordenada. La CIE ha estandarizado varias distribuciones de potencia espectral de iluminantes que pueden ser

usados para este propósito. Las coordenadas triestímulo de una superficie, proveen suficiente información para igualar la superficie cuando esta es observada bajo el iluminante usado para calcular esas coordenadas. Es importante tener en mente que dos superficies que tienen las mismas coordenadas triestímulo bajo un iluminante, no necesariamente comparten las mismas coordenadas triestímulo bajo algún otro iluminante[20].

2.3 Reproducción digital del color.

Los principios de la visión humana son usados para diseñar dispositivos de captura y despliegue de imágenes. Algunas propiedades del sistema visual humano (SVH) que son esenciales para el diseño de tecnologías relacionadas con el color son: tricromaticidad, resolución espacial y resolución temporal.

Los dispositivos de imagen (captura y despliegue) conforman un canal de comunicación donde la señal de entrada es la escena original. Esta escena es capturada y comunicada a través de un canal de transmisión. La transmisión comúnmente incluye varias operaciones matemáticas que facilitan la comunicación inter-dispositivos, eficientizan la transmisión y el almacenaje. La imagen transmitida es después convertida de tal manera que pueda ser reproducida por un dispositivo de despliegue (display). Finalmente, la imagen desplegada es adquirida por el sistema visual humano. Cuando el canal de comunicación de imagen(CCI) trabaja bien, la experiencia visual de observar la imagen original corresponde a la experiencia visual de observar la imagen original corresponde a la experiencia visual de observar la reproducción. Por lo tanto, las métricas del CCI deben basarse en que tan bien el sistema se desenvuelve con respecto al SVH [2].

2.3.1 Tricromatricidad.

Suponiendo que la distribución espectral de una luz es $E(\lambda)$. La tricromaticidad nos dice que el sistema visual hace una medición lineal y tridimensional de esta función. La meta tricromática del CCI puede ser expresada por una ecuación de reproducción de color, la cual es fundamental para la ingeniería de todos los dispositivos de color. La ecuación de la reproducción de color sólo es precisa cuando el original y la reproducción son vistos en las mismas

Figura 2.8 Visión general del CCI.

condiciones generales de visualización, incluyendo tamaño e iluminación ambiental; Los intentos para generalizar dicha ecuación representan un problema abierto en la ingeniería de color[2].

2.3.2 Resolución espacial y color.

No habrá mejora en la calidad de la imagen si la reproducción excede la resolución espacial o temporal del sistema visual humano. Por lo tanto, el costo de manufactura de un dispositivo para despliegue de color es sensible a estos límites. Una característica importante del sistema visual humano es la pobre resolución espacial para ciertos colores. El mayor efecto se encuentra en la región del espectro de longitud de onda corta. En esta región, la aberración cromática de la córnea y del lente del ojo humano limitan la resolución espacial a seis ciclos por grado (cpd)[2].
2.3.3 Captura de la imagen.

El propósito general de la captura de imágenes para escáneres y cámaras, es adquirir suficiente información acerca del material de entrada para posibilitar la creación de una reproducción que luzca similar y que sea placentera para el ojo humano. Un dispositivo de captura de imágenes ideal, debe capturar y codificar sólo las partes de la señal (longitudes de onda), como lo hace el sistema visual humano. Ya que capturar más información es desperdicio de recursos, y capturar menos causará diferencias perceptuales significativas en la reproducción[2].

Figura 2.9 Ejemplo de captura del SVH.

2.3.3.1 Cámaras digitales.

El mosaico para adquisición de imágenes comúnmente usado es el patrón de Bayer, Figura 2.10. En este diseño son usados sensores (R,G,B), donde el sensor del verde (G) correspondiente a la longitud de onda media está presente al doble de la tasa de muestreo espacial que los sensores del rojo (R) y del azul (B). Esto debido a que el sensor del verde es crítico para definir la representación de la luminancia. El sistema visual humano es más sensitivo a variaciones de luminancia que a variaciones cromáticas[2].

Figura 2.10 Patrón de bayer de sensores de color R,G,B.

2.3.3.2 Caracterización y calibración de dispositivos de captura de imagen.

En aplicaciones modernas de captura de imagen, la caracterización del color significa encontrar un método para convertir los valores R,G,B medidos en una descripción basada en valores triestimulo o cualquier otros valores equivalentes a la absorción de los conos humanos. La caracterización conduce directamente a la función de transducción, también llamada función gama. La calibración se refiere al proceso de ajustar los parámetros del dispositivo de tal manera que el dispositivo esté en un estado conocido donde la caracterización sea precisa [2].

2.3.3.3 Balance de blanco.

Uno de los procesos más desafiantes en una cámara digital es encontrar un punto blanco apropiado para una escena y ajustar los colores de la imagen. Las escenas reales contienen muchas fuentes de luz. En esas situaciones, el sistema visual humano se adapta a las circunstancias y reconoce los objetos como si estos fueran observados en condiciones típicas de iluminación, mientras que un sensor de cámara solamente da señales de salida (raw). El balance de blanco de una cámara digital simula el ajuste realizado en la retina humana mediante la modificación de sensibilidad de los conos para adaptarse cromáticamente a la iluminación del ambiente [2].

2.3.3.4 Punto blanco.

Una cámara digital necesita saber el blanco adaptado que le sistema visual humano determina como acromático. En una cámara, tres tipos de aproximaciones son usados para estimar el punto blanco, o cromaticidad de una fuente de luz: El promedio de la escena, el blanco más brillante y la gama de color de la escena. Un algoritmo práctico se construye con una mezcla de esas aproximaciones además de otra información estadística [2].

2.3.3.5 Rango dinámico y cuantización.

El rango dinámico de un sistema de captura es es el rango desde el nivel de luz que produce una respuesta justo debajo del nivel de saturación del sistema hasta el nivel de luz necesario para producir una respuesta justo por encima del ruido negro (dark noise). En las cámaras CCD (charge-coupled device) el valor común es de 60 decibeles (dB). La cuantización del dispositivo describe cuántos niveles de intensidad son usados en la salida digital. Por ejemplo, un dispositivo de 8-bit clasifica las intensidades de entrada en 256 niveles [2].

2.3.3.6 Reproducción de color de imágenes.

Es frecuente el caso donde una imagen es capturada bajo ciertas condiciones de iluminación y después reproducida para la observación de la imagen en condiciones diferentes de iluminación. Cuando esto ocurre, reproducir la imagen con los mismos valores triestimulo no concordará con la apariencia de la original. Es por eso que los algoritmos para balance de color son una parte importante en el diseño de cámaras digitales [2].

2.3.4 Dispositivos de visualización de imagen.

Las pantallas electrónicas que sirven para visualizar imágenes pueden ser del tipo emisivo y no emisivo: las pantallas emisivas son aquellas en las cuales el elemento de formación de imagen también sirve como fuente de luz, por ejemplo una pantalla LCD; mientras que las pantallas no emisivas modulan algún aspecto de una fuente de iluminación externa, por ejemplo el llamado papel electrónico (e-ink) [2].

Figura 2.11 Comparación de pantallas de diferentes tecnologias.

2.4 Conceptos matemáticos.

2.4.1 Modelos matemáticos.

Cuando interactuamos con un sistema, necesitamos algunos conceptos de como sus variables se relacionan entre ellas. Como una definición amplia, se llama modelo del sistema a la relación entre las señales de entrada y salida. Es claro que los modelos tienen varias formas y son representados con diferentes grados de formalismo matemático. El uso que se le dé determina el grado de sofisticación que es requerido para que el modelo sea útil.

Para determinados sistemas es apropiado describir sus propiedades usando tablas numéricas y/o gráficas, a este tipo de descripciones de un sistema se le llaman modelos gráficos. Para aplicaciones más avanzadas, es necesario usar modelos que describan la relación entre las variables del sistema en términos de expresiones matemáticas, a estos sistemas se les llama modelos matemáticos o modelos analíticos. Los modelos matemáticos según sus características pueden ser llamados: De tiempo continuo o tiempo discreto, agrupado o distribuido, determinístico o estocástico, lineal o no lineal, etc. El uso de modelos matemáticos es inherente a todos las areas de la ingeniería y la física. De hecho, una gran parte del campo de la ingeniería se trata de como hacer buenos diseños basados en modelos matemáticos. Los modelos también son usados para simular y predecir, en areas como la economía, ecología y biología.

El modelo usado en una simulación por computadora de un sistema es un programa. Para sistemas complejos, este programa puede estar hecho de muchas subrutinas interconectadas y tablas de consulta, las cuales no es factible resumir analíticamente como un modelo matemático, se usa el termino modelo de software para ese tipo de descripciones computarizadas.

Básicamente un modelo debe de construirse a partir de datos observados. Una forma de desarrollar modelos matemáticos y gráficos es basarse directamente en la experimentación, donde señales de entrada y de salida del sistema son medidas y almacenadas, las cuales son sujetas a análisis de datos a fin de inferir un modelo adecuado [21].

2.4.2 Regresión lineal múltiple.

En la mayor parte de los problemas de investigación en los cuales se aplica un análisis de regresión, se necesita más de una variable independiente en el modelo de regresión. La complejidad de casi todos los mecanismos o sistemas científicos es tal que, con la intención de estar en posibilidades de predecir una respuesta importante, es necesario un modelo de regresión múltiple, y cuya solución involucra el método de mínimos cuadrados. Entonces al ajustar un modelo de regresión lineal múltiple, el conocimiento de la teoría de matrices puede facilitar considerablemente los cálculos matemáticos [22].

2.4.3 Permutaciones.

Dadas n cosas diferentes (elementos u objetos), es posible disponerlas en un renglón en cualquier orden. Cada una de tales disposiciones o arreglos se denomina permutación de las cosas dadas. Por ejemplo, se tienen 6 permutaciones de las tres letras a, b, c; es decir, abc, acb, bac, bca, cab, cba.

El número de permutaciones de n cosas diferentes tomadas todas a la vez es (n factorial) n! [22].

Capítulo 3

Experimentación y procesamiento de datos.

3.1 Experimentación preliminar

Al inicio de este trabajo de tesis sólo se tenia un espectrofotómetro en el laboratorio, con el tiempo se adquirió un colorímetro imaging mediante un proyecto FOMIX del Consejo Zacatecano de Ciencia y Tecnología. Con la finalidad de comprender mejor las variables involucradas en la medición de color, así como la familiarización con diversos equipos de medición en aspectos como la configuración del software y calibraciones, se procedió a realizar mediciones preliminares usando primero el espectrofotómetro y después cuando estuvo disponible, con el colorímetro imaging.

3.1.1 Experimento 1: Mediciones con espectrofotómetro

El primer experimento se realizó utilizando el espectrofotómetro con el que se contaba en ese momento en el laboratorio. Para armar el experimento se requerían cuatro elementos básicos: El télefono movil con cámara, la fuente de luz, muestras de color (parches) y el espectrofotómetro.

Usualmente, este tipo de experimentos se llevan a cabo dentro de una cabina de iluminación que contiene una lámpara o iluminante estandar. Pero nuestro laboratorio no contaba con una cabina de iluminación, por lo que se iluminaron las muestras de color con una lámpara de halógeno comercial (Figura 3.1). Esta fuente de luz es incandescente y su espectro de emisión

es ancho y centrado, muy parecido al iluminante estandar tipo A. La iluminación fue rasante, a un ángulo aproximado de 30°.

Figura 3.1 Fuente de luz iluminando las muestras de color.

Al principio tampoco se contaba con una paleta de colores estandar para usarse como muestra de colores. Por esta razón se utilizó una paleta con seis parches de colores diferentes, la cual obtuvimos en una tienda de pinturas vinilicas y acrilicas (Figura 3.2). Se seleccionó una paleta de colores que contuviera varios tonos y grados de saturación cromática.

Figura 3.2 Paleta con seis parches de colores.

Para medir el color de la muestra se empleó un espectrofotómetro USB2000 de la marca Ocean Optics (Figura 3.3), que se calibró usando la Ocean Optics LS-1-CAL la cual es una fuente de luz estandar (cuya calibración esta avalada por el NIST) para mediciones fotométricas absolutas. Este espectrofotómetro colecta la luz mediante una fibra óptica y tiene una resolución espectral de 1 nm, lo cual es más que suficiente para hacer mediciones de color, pues las funciones triestimulo tienen una resolución típica de 5 nm y máxima de 1 nm.

Figura 3.3 Espectrofotómetro Ocean Optics USB 2000.

Para procesar el espectro medido se usa el software del espectrofotómetro, el Ocean Optics SpectraSuite. En este software se adquieren y procesan los datos provenientes del espectrofotómetro USB2000 para obtener las coordenadas de cromaticidad. Cabe mencionar que se tuvieron problemas con el funcionamiento del software en el sistema operativo Windows, por lo que se instaló un sistema operativo linux, el Ubuntu version 10.14 LTS, y se consiguió e instaló el SpectraSuite para linux, de esta manera se comprobó el correcto funcionamiento al permitir calibrar el USB 2000 y realizar las mediciones fiables.

Una vez descritos los elementos básicos para realizar esta primera medición de color, procedemos a describir el procedimiento experimental, el cual se puede resumir en 4 pasos:

Paso 1.- Se iluminó la muestra de color conformada por seis parches de distintos colores como se muestra en la Figura 3.4. Y se midieron las cromaticidades para cada color con el espectrofotómetro de fibra óptica. La fibra óptica se colocó a 2cm arriba de cada parche con lo que se aseguró que colectara sólo la luz reflejada de cada parche pues el ángulo de apertura de

la fibra es menor a 10°. Después se repitió la medición pero usando luz natural (luz de día) en lugar de la lámpara de halógeno.

Figura 3.4 Medición de cromaticidad de las muestras de color (colores de referencia).

Paso 2.- Utilizando casi el mismo arreglo experimental pero con el teléfono celular, se le tomó una fotografía a los parches de colores con la cámara digital del celular, como se muestra en la Figura 3.5. Estas imágenes se registraron usando iluminación natural (luz de día).

Paso 3.- Las imágenes capturadas con la cámara del celular se reprodujeron en su misma pantalla. Así se midió el color con el espectrofotómetro, el cual se colocó arriba de la pantalla del celular. Es decir, los colores reproducidos de la imagen capturada se midieron con el espectrofotómetro directamente sobre la pantalla del celular. Esta medición se repitió en tres ocasiones variando el nivel de brillo de la pantalla a niveles mínimo, medio y máximo.

Paso 4.- Finalmente, usando el software Ocean Optics SpectraSuite se procesaron los espectros de luz medidos en los pasos 1 y 3, para calcular las coordenadas cromáticas de los colores reales y los reproducidos en la pantalla del celular. Con estos valores de cromaticidad se calcularon las diferencias de color entre la referencia (color del parche real) y la imagen reproducida (color del parche reproducido en la pantalla) para diferentes niveles de brillo de la pantalla del telefono móvil. Los datos recolectados durante las mediciones se analizaron en busca de algún patrón o comportamiento matemático en las diferencias de color ΔE_{ab}^* para los tres niveles de

Figura 3.5 Muestra de cómo se tomó la fotografía de las muestras de color con el teléfono celular.

brillo de pantalla. En el Capítulo 4 presentaremos los resultados de las mediciones, su análisis y discusión. En la Figura 3.6 se puede apreciar una aproximación visual de las diferencias en los colores "originales"(colores muestra o de referencia) y los reproducidos en la pantalla del celular correspondientes al nivel máximo de brillo de pantalla.

(a) Colores "originales".

(b) Colores reproducidos en la pantalla del celular.

Figura 3.6 Diferencia visual de los colores originales y los reproducidos en la pantalla del celular.

3.1.2 Experimento 2: Mediciones con colorímetro imaging

Una vez adquirido el colorímetro imaging ProMetric G y después de tomar la capacitación proporcionada por un agente de la empresa Radiant Zemax, se procedió a repetir el experimento 1 pero ahora con el colorímetro imaging en lugar del espectrofotómetro. El colorímetro imaging toma fotografías y mide el color de cada pixel de la imagen.

En esta segunda etapa de experimentación, el colorímetro imaging brindó la ventaja de poder realizar mediciones en multiples puntos a la vez. Además, la calibración y el programa del colorímetro imaging para hacer las mediciones representó una mejora considerable con respecto a las mediciones realizadas con el espectrofotómetro USB2000. Para este experimento se agregó una cabina de iluminación y se sustituyó el parche de colores anterior por un parche de colores profesional para colorimetría.

Para construir la cabina de iluminación hechiza, se forró con fomi blanco una caja de 60 cm de ancho, 30 cm de alto y 80 cm de profundidad, con la finalidad de hacer que la luz se reflejara difusamente y asi mejorar la homogeneidad de la iluminación sobre el parche de colores. En el interior de la cabina se colocaron dos lámparas de halógeno como iluminante.

El colorímetro imaging con el cual se realizarón las mediciones de este experimento, se muestra en la Figura 3.7. Este consiste en una cámara científica con calidad radiométrica, cuyo sensor CCD es enfriado termoelectricamente y tiene 1536 por 1024 pixeles de resolución de medición, rango dinámico de 14 bits y 3 filtros espectrales que imitan las funciones de igualación de color CIE $\bar{X}(\lambda)$, $\bar{Y}(\lambda)$ y $\bar{Z}(\lambda)$. Estos filtros estan integrados en un disco giratorio dentro de la cámara y según la configuración que se realice para la medición son utilizados por el colorímetro imaging.

El Radiant Zemax ProMetric 10.7.20, es el software utilizado para realizar las mediciones con el colorímetro ProMetric G. Un ejemplo de la interface de este software se muestra en la Figura 3.8. Este software proporciona información de coordenadas cromáticas CIELAB.

Figura 3.7 Colorímetro imaging Radiant Zemax ProMetric G.

Figura 3.8 Pantalla del software Radiant Zemax ProMetric 10.7.20. Como ejemplo se muestran 24 mediciones de color representadas por circulos en cada uno de los 24 parches de color mostrados.

Además del colorímetro imaging también se adquirio un X-Rite ColorChecker Digital SG (Figura 3.9). El ColorChecker Digital SG (semi gloss), es una tablilla estándar que se utiliza para calibración de color de cámaras fotográficas y cuya característica especial es que la reflectancia de los parches de colores es ideal para que se refleje de forma eficiente la luz del iluminante.

Figura 3.9 Paleta de parches de colores X-Rite ColorChecker Digital SG.

En este experimento preliminar sólo se usaron dos telefonos celulares para fotografiar el color checker. La imagen desplegada en la pantalla del celular se configuró en varios modos diferentes para medir su color. En la Tabla 3.1 se observan los celulares utilizados y la configuración del modo de captura de imagen.

Una vez descritos los elementos básicos para realizar este segundo experimento preliminar, pasamos a describir el procedimiento para llevar a cabo las mediciones de color de estos dos celulares, el cual se resume en los siguientes pasos:

Paso 1.- Se iluminó con dos lámparas de halógeno el ColorChecker Digital SG (CCDSG). A continuación se midieron los valores colorimetricos de los parches de colores con un colorímetro imaging (IC). Lo cual se muestra en la Figura 3.10.

Paso 2.- Utilizando como referencia sólo los 24 parches principales del ColorChecker y dos celulares, se tomo una fotografía con cada teléfono celular, Figura 3.11. Lo cual se repitio para cada una de las configuraciones de captura de imagen descritas en la Tabla 3.1.

Paso 3.- Las imágenes capturadas con los telefonos se desplegaron en su propia pantalla y se colocaron dentro de la cabina de iluminación. Los colores de la imagen del color checker

Celular	Resolución	Balance de Blanco	Modo
Samsung G. S4	8 MP	Incandescente	1
	8 MP	Automático	2
	13 MP	Incandescente	3
	13 MP	Automático	4
Sony Xperia L	8 MP	Incandescente	5
	8 MP	Automático	6

 Tabla 3.1 Configuración del modo de captura de los celulares en el experimento preliminar 2.

Figura 3.10 Muestra de comó se tomó la medición de referencia de los parches de colores del CCDSG con el colorímetro imaging.

mostrada en la pantalla del teléfono celular, se midieron con el IC como se muestra en la Figura 3.12.

Paso 4.- Finalmente, se obtuvieron las coordenadas cromáticas de la escena real y de la imagen desplegada en la pantalla del celular. Con estos valores de cromaticidad se calcularon las diferencias de color entre la referencia y la imagen reproducida en la pantalla, para los diferentes modos de balance de blanco y resolución de imagen de los celulares. El análisis de estas diferencias de color se presenta en el Capítulo 4. La Figura 3.13 muestra cómo se ven los parches de color en cada uno de los modos de captura de los telefonos celulares.

Figura 3.11 Muestra de comó se tomó la fotografía de los parches de colores del CCDSG con el celular.

Figura 3.12 Muestra de la medición de color con el colorímetro imaging de los parches de colores del CCDSG reproducidos en la pantalla del celular.

3.2 Experimentación final

Gracias a una estancia corta de investigación realizada en Taipei, Taiwán. Se tuvo acceso al equipo completo de medición adecuado para realizar un experimento confiable. En el Graduate Institute of Color and Illumination Technology (GICIT), de la National Taiwan University of Science and Technology (NTUST), se utilizarón instrumentos calibrados como un analizador de uniformidad de luminancia y cromaticidad (el cual funciona a su vez como colorímetro imaging de alta sensibilidad), la cabina de iluminación profesional y diversos color checker.

Figura 3.13 Imágenes de la reproducción de colores en la pantalla de los 2 celulares para los 6 modos de captura descritos en la Tabla 3.1.

Además de contar con la ayuda de estudiantes de posgrado y un investigador con experiencia en temas de color relacionados, con lo que se procedio a realizar la experimentación final.

3.2.1 Equipo de medición.

A continuación se describe el equipo utilizado en Taiwán para realizar las mediciones de los experimentos finales.

3.2.1.1 Macbeth SpectraLight III

Es una cabina de iluminación que es utilizada ampliamente en la investigación e industria, para evaluación de color en condiciones de iluminacion controlada, Figura 3.14. Entre algunas de sus caracteristicas cuenta con una funte de luz de tungsteno filtrado, lo que permite una simulacion de luz de día confiable. Además maneja 6 diferentes fuentes de luz incluyendo los estandar de luz de día (Iluminantes D75, D65 ó D50), luz de día en el horizonte a 2300 °k, luz incandescente (Iluminante A), luz fría fluorescente (CWF), Ultravioleta y TL84 ó U30. Esto permite evaluar muestras de color bajo diferentes condiciones de iluminación y checar el posible metamerismo de las mismas (cuando las muestras coinciden en color bajo un iluminante pero se ven diferentes bajo algún otro), como se puede observar en la Figura 3.15.

Figura 3.14 Cabina de iluminación Macbeth SpectraLight III

Figura 3.15 Dos muestras de color iluminadas con diferente fuente de luz: con (a) iluminante A y (b) iluminante D65.

3.2.1.2 X-Rite ColorChecker

El X-Rite ColorChecker (Figura 3.16) es una paleta de colores estándar con 24 parches de colores naturales, cromáticos, primarios y escala de grises científicamente escogidos en una amplia gama de colores. Muchos de estos parches representan objetos naturales de interés especial, tales como la piel humana, el follaje y el cielo azul. Entre las principales aplicaciones son: fotografía digital y convencional, videografía, artes gráficas y en la industria.

3.2.1.3 TOPCON UA-1000A

El UA-1000A (Figura 3.17) es un analizador de luminancia y cromaticidad, manufacturado por la marca Topcon, el cual tiene un rango dinámico de 0.005-100,000 $\frac{cd}{m^2}$ y una resolución de

Figura 3.16 Paleta de colores X-Rite ColorChecker.

16 bits. Lo que hace posible determinar pequeñas diferencias en luminancia y cromaticidad. También cuenta con un CCD enfriado con resolución de 1360 por 1024 pixeles. Cuenta con un lente con tres ajustes de zoom: Ancho, Normal y Telescopico lo que provee de tres campos de visión distintos para objetivos de medición de área pequeña y área grande.

Este dipositivo es adecuado para medir detalles en pantallas y teclados de telefonos celulares, panel de instrumentos de automóviles, pantallas de aviónica y paneles de control diversos. El UA-1000A sobresale en mediciones de área detallados donde instrumentos estándar de medición puntual son insuficientes. En una sola medición, toda la distribución de luminancia y cromaticidad de la zona de visualización se capta con presición y detalle, los mapas de luminancia proporcionan las áreas brillantes y obscuras, faltas de uniformidad y otros efectos de brillantez como Mura y los gradientes de baja frecuencia espacial.

Figura 3.17 Analizador de uniformidad de luminancia y cromaticidad TOPCON UA-1000A.

El TOPCON UA-1000 Standard Edition (Figura 3.18) es el software que se utilizó para controlar y configurar el dispositivo de medición, así como para extraer los datos de las mediciones de color.

Figura 3.18 Ejemplo de interfaz de Software UA-1000 Standard Edition. (a) Vista Live View en el software sirve para ver en tiempo real lo que se va a medir y (b) Celular u objetivo de medición.

3.2.2 Experimento 1: Geometría de medición 0/45

Antes de realizar mediciones debimos considerar algunos aspectos importantes. La luz de la cabina se debia poner a calentar al menos 20 minutos para estabilizar el espectro. El colorímetro se debia encender y dejar funcionar 30 minutos para que el CCD alcanzara su temperatura de funcionamiento. También como medida preliminar antes de comenzar los experimentos finales, se verificó la homogeneidad de los dos iluminantes de la cabina SpectraLight que se utilizarian, con una paleta blanca de la marca X-Rite y midiendo la luminancia con el UA-1000A (Figura 3.19). La homogeneidad registrada fue del 97 porciento o mayor, por lo que se procedio a realizar los experimentos.

Una vez descritos los pasos previos a las mediciones y los elementos básicos, en seguida se explica como se realizó el experimento:

Paso 1.- Se iluminó el color checker classic dentro de la cámara SpectraLight como se muestra en la Figura 3.20. Y se midieron las cromaticidades para los 24 colores con el colorímetro UA-1000A . Estas mediciones de referencia se realizaron primero con el iluminante A y después se repitieron con el iluminante D65.

(b)

(d)

(a)

(c)

Figura 3.19 Pruebas de homogeneidad de los iluminantes dentro de la cabina SpectraLight.(a) Posicionando el UA-1000A, (b) Paleta blanca dentro de la cabina, (c) Imagen tomada por el UA-1000A y (d) Vista de todo el arreglo experimental.

Figura 3.20 Medición del color checker con colocación en ángulo de 45° del colorímetro. (a) Medición del color checker de referencia con el iluminante D65 (luz del laboratorio encendida), (b) Medición del color checker de referencia con el iluminante A (luz del laboratorio apagada).

Paso 2.- Utilizando el mismo arreglo experimental, se le tomo una fotografía al color checker con 4 teléfonos celulares de diferentes marcas y tipos. Estas fotografías se tomaron usando el iluminante A y se luego se hizo lo mismo con el D65. Los telefonos celulares utilizados fueron: HTC Sensation XE, Samgung GT-S5830M, HTC One M7 y Iphone 5; mismos que fueron configurados a brillo máximo de pantalla, el balance de blanco (white balance) se puso

en modo automático, y también se desactivó el flash (para que al tomar las fotografías no se tubiera influencia externa al iluminante de la cabina de iluminación).

Paso 3.- En la Figura 3.21 se observa cómo ahora se colocaron los celulares en la misma posición en la que se midió el color checker de referencia. Se midió la cromaticidad de la imagen reproducida en la pantalla del celular mediante el colorímetro UA-1000A. Esta medición se realizó para los 4 celulares bajo el iluminante A, y luego se repitió bajo el iluminante D65.

Figura 3.21 Medición de colores de la pantalla a cada celular.

Paso 4.- Se repitieron las mediciones realizadas en el Paso 3 pero con la luz de la cabina apagada. En la Figura 3.22 se observa cómo se colocaron y se midieron los celulares pero con los iluminantes de la SpectraLight apagados, únicamente se midio la luz emitida por las pantallas de los celulares con las fotografías del color checker de referencia.

Paso 5.- Finalmente, usando el software TOPCON UA-1000 Standard Edition se extrajeron las coordenadas cromáticas X, Y y Z de todas las mediciones realizadas, con las cuales se calcularon las coordenadas cromáticas CIELAB utilizando Microsoft Excel. Las cuales se analizan en el Capítulo 4.

Figura 3.22 Medición de la pantalla a cada celular, con iluminante de cabina apagado.

3.2.3 Experimento 2: Geometría de medición 45/0

En este caso la fuente de luz de la cabina ilumina a un ángulo de 45° el color checker, mientras que la medición de color se realiza a un ángulo de 0° . Es decir, el colorímetro se apunta de frente a la paleta de colores. En este experimento aparte de cambiar de geometría de medición, se midieron 6 celulares en lugar de 4. La medición se resume en 4 pasos que se enlistan a continuación.

Paso 1.- Se iluminó el color checker classic dentro de la SpectraLight como se muestra en la Figura C.1. Y se midieron las cromaticidades para los 24 colores con el colorímetro UA-1000A. Estas mediciones de referencia se realizaron primero con el iluminante A y después se repitieron con el iluminante D65.

Paso 2.- Utilizando el mismo arreglo experimental, se le tomo una fotografía al color checker con 6 teléfonos celulares de diferentes marcas y tipos. Esto se registró usando el iluminante A y se luego se hizo lo mismo con el D65. Los telefonos celulares utilizados fueron: Nokia Lumia 920, Iphone 6, HTC Sensation XE, Samsung GT-S5830M, Samsung S4 y LG-GPRO2; mismos que fueron configurados con el balance de blanco (white balance) en modo automático, y también se desactivó el flash.

(b)

Figura 3.23 Colocación del colorímetro y color checker en geometría 45/0. (a) Medición 45/0 del color checker con el iluminante A, (b) Medición 45/0 del color checker con el iluminante D65.

Paso 3.- En la Figura 3.24 se observa como ahora se colocaron los celulares en la misma posición en la que se midio el colorchecker de referencia es decir de frente al colorímetro (0°). La pantalla del celular reprodujo la imagen capturada y se midió la cromaticidad con el colorímetro UA-1000A. Se repitió esta medición para cada celular con el brillo de la pantalla del celular a nivel máximo, después a nivel medio y finalmente a nivel mínimo. Las mediciones para los tres niveles de brillo se realizaron desplegando en la pantalla del celular la imagen de referencia tomada con el iluminante A y con el D65. Esto dió un total de 36 mediciones de 24 parches de color.

Figura 3.24 Medición 45/0 de las pantallas de los celulares.

Paso 4.- Asi como en el experimento anterior se calcularon las coordenadas CIELAB a partir de las coordendas X, Y, Z y los blancos de referencia correspondientes a cada iluminante.

Como ejemplo, la Figura 3.25 muestra la distribución de las mediciones en el diagrama de cromaticidad CIEu'v' de los colores de referencia medidos con los dos diferentes iluminantes. Este y otros aspectos observados se explicaran más a detalle en el siguiente capítulo.

(a) Iluminante A.

(b) Iluminante D65.

Figura 3.25 Diagrama de cromaticidad CIE u'v' que muestra la gama de colores de referencia medidos. Es decir, los 24 colores del color checker medidos en 45/0 directamente con el colorímetro.

3.3 Cálculo de la matriz de transferencia de color (M)

La matriz de transferencia de color (\mathbf{M}) del sistema cámara-pantalla de smartphones relaciona las coordenadas de color de la escena real con las coordenadas de color de la escena desplegada en la pantalla del smartphone.

Para llevar a cabo la construcción matemática de la **M**, se usaron las mediciones de color descritas en la sección 3.2. La **M** representa matemáticamente la transformación de los colores originales de una escena al ser fotografíados y después desplegados en la pantalla del celular. Diversas formas de conversión de color fueron encontradas en la literatura, en esta tesis se presentan dos modelos de **M** uno lineal y uno cuadrático. Las bases para la construcción de dichos modelos, es decir, la metodología para crear los modelos matemáticos de la **M** se presenta a continuación.

3.3.1 Modelo lineal

El modelo lineal relaciona una triada de coordenadas de color CIELAB ($\tilde{L^*}, \tilde{a^*}, \tilde{b^*}$) del color reproducido en la pantalla del celular, con las coordenadas de color L^*, a^*, b^* correspondientes al color original. Ambas triadas medidas con un colorímetro. La relación matemática entre estas dos triadas de coordenadas cromáticas está dada por una matriz de transferencia de color **M**, y cuyo cálculo es el propósito principal del modelo el cual se representa mediante la siguiente ecuación:

$$\begin{bmatrix} \hat{L^{*}} \\ \hat{a^{*}} \\ \hat{b^{*}} \end{bmatrix} = \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \\ M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} \\ M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} \end{bmatrix} \cdot \begin{bmatrix} L^{*} \\ a^{*} \\ b^{*} \\ 1 \end{bmatrix}$$
(3.1)

donde $(\hat{L^*}, \hat{a^*}, \hat{b^*})$ son las coordenadas de color calculadas por el modelo.

A continuación se presenta la explicación de la forma cómo se calcula el primer renglón de elementos de la matriz **M**. Para obtener los otros dos renglones es el mismo procedimiento.

Primero se define un vector transpuesto θ dado por:

$$\boldsymbol{\theta} = \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \end{bmatrix}^T$$
(3.2)

En seguida se construye una matriz de entrada \mathbf{X} , en la cual es donde se introducen todas las triadas de coordenadas de color de las mediciones de referencia, es decir las coordenadas L^*, a^*, b^* de los 24 parches de color del color checker. Así la matriz \mathbf{X} es:

$$\mathbf{X} = \begin{bmatrix} L_1^* & a_1^* & b_1^* & 1\\ \vdots & \vdots & \vdots & \vdots\\ L_{24}^* & a_{24}^* & b_{24}^* & 1 \end{bmatrix}$$
(3.3)

Ahora se define un vector de salida **y**, el cual contiene las 24 mediciones hechas en la pantalla del celular de la primera coordenada de color $\tilde{L^*}$ para calcular el primer renglón de parametros de **M** dado por θ .

$$\mathbf{y} = \begin{bmatrix} \tilde{L_1^*} & \cdots & \tilde{L_{24}^*} \end{bmatrix}^T$$
(3.4)

Para una mejor comprensión del modelo es preciso además, definir el vector de salida estimado $\hat{\mathbf{y}}$, el cual se puede expresar como el producto de los datos de entrada \mathbf{X} y el vector de parámetros $\boldsymbol{\theta}$ estimado, es decir:

$$\hat{\mathbf{y}} = \mathbf{X} \cdot \boldsymbol{\theta} \tag{3.5}$$

Entonces la estimación de θ , es obtenida de la minimización de la norma $||\mathbf{y} - \hat{\mathbf{y}}||$ entre la medición \mathbf{y} y la estimación $\hat{\mathbf{y}}$, de la misma manera como lo realizaron *K*. *León et al* en su artículo [17].

La construcción de la matriz de transferencia de color **M** requiere calcular las tres θ utilizando algebra lineal. Debido a que **X** no es una matriz cuadrada y por lo tanto no es invertible por métodos tradicionales, es utilizada la pseudoinversa de Moore-Penrose para un sistema lineal sobredeterminado ($[\mathbf{X}^T \cdot \mathbf{X}]^{-1} \cdot \mathbf{X}^T$), para obtener $\boldsymbol{\theta}$. Lo cual se hace mediante el siguiente producto:

$$\boldsymbol{\theta} = [\mathbf{X}^T \cdot \mathbf{X}]^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$
(3.6)

Mediante el cálculo de θ para las 3 coordenadas cromáticas, se generan los tres renglones de parámetros de la matriz **M** de 12 elementos. La ventaja de este modelo es que su solución no requiere iteraciones y el cálculo es directo.

3.3.2 Modelo cuadrático

Con la finalidad de obtener una matriz de transferencia de color que reproduzca con mayor precisión el color que se mide en la pantalla del celular, se consideró un modelo que involucra variables no lineales. En el modelo cuadrático se relaciona el cuadrado de las coordenadas cromáticas del objeto original con la triada de coordenadas de color de la imagen desplegada en la pantalla. La cual es equivalente a considerar la influencia de las coordenadas de entrada L^*, a^*, b^* al cuadrado, así como la de la multiplicación entre ellas.

Este modelo cuadrático se puede representar matemáticamente mediante:

$$\begin{bmatrix} \hat{L}^{*} \\ \hat{a}^{*} \\ \hat{b}^{*} \end{bmatrix} = \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} & M_{1,5} & M_{1,6} & M_{1,7} & M_{1,8} & M_{1,9} & M_{1,10} \\ M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} & M_{2,5} & M_{2,6} & M_{2,7} & M_{2,8} & M_{2,9} & M_{2,10} \\ M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} & M_{3,5} & M_{3,6} & M_{3,7} & M_{3,8} & M_{3,9} & M_{3,10} \end{bmatrix} \cdot \begin{bmatrix} L^{*} \\ a^{*} \\ L^{*} \cdot a^{*} \\ a^{*} \cdot b^{*} \\ (L^{*})^{2} \\ (a^{*})^{2} \\ (b^{*})^{2} \\ 1 \end{bmatrix} (3.7)$$

La estimación de los parámetros de la matriz de transferencia de color **M** (que para este modelo tiene una tamaño de 3x10), es realizada de manera similar que en el modelo lineal. Este modelo como se puede observar en 3.7, es lineal matricialmente a pesar de involucrar variables de entrada cuadráticas. Por ejemplo para el cálculo del primer renglón de elementos de la matriz **M**, se define el vector de parámetros θ :

$$\boldsymbol{\theta} = \left[\begin{array}{ccc} M_{1,1} & M_{1,2} & \cdots & M_{1,10} \end{array} \right]^T$$
(3.8)

Y del mismo modo que en el modelo lineal, la matriz de entrada X, de las 24 mediciones de color de referencia L^* , a^* , b^* es:

$$\mathbf{X} = \begin{bmatrix} L_{1}^{*} & a_{1}^{*} & b_{1}^{*} & (L^{*} \cdot a^{*})_{1} & (L^{*} \cdot b^{*})_{1} & (a^{*} \cdot b^{*})_{1} & (L^{*})_{1}^{2} & (a^{*})_{1}^{2} & (b^{*})_{1}^{2} & 1 \\ \vdots & \vdots \\ L_{24}^{*} & a_{24}^{*} & b_{24}^{*} & (L^{*} \cdot a^{*})_{24} & (L^{*} \cdot b^{*})_{24} & (a^{*} \cdot b^{*})_{24} & (L^{*})_{24}^{2} & (a^{*})_{24}^{2} & (b^{*})_{24}^{2} & 1 \end{bmatrix}$$
(3.9)

El vector de salida y con las 24 mediciones de $\tilde{L^*}$ es igual al ya definido en la Ecuación 3.4. Además, las estimaciones de θ se realizan de igual manera que en el modelo lineal. Es decir, utilizando la ecuación 3.6. De esta manera se obtiene una matriz de transferencia de color **M** con 30 elementos para la Ecuación cuadrática 3.7.

3.4 Desempeño de los modelos de M

Para comparar los modelos lineal y cuadrático se requieren indicadores de su desempeño. Estos indicadores deben comparar los valores $\tilde{L^*}, \tilde{a^*}, \tilde{b^*}$ medidos en la pantalla con los calculados mediante los modelos de **M**, es decir, $\hat{L^*}, \hat{a^*}, \hat{b^*}$. Para lo cual proponemos calcular el error medio normalizado entre las coordenadas de color. A continuación describimos las tres formas que usamos para obtener el error.

3.4.1 Error local e

Este error es llamado así ya que cuantifica las variaciones de **M** para cada celular respecto al rango de valores posibles de cada coordenada cromática. Es decir, las normalizaciones del error para cada coordenada son realizadas por ΔL , Δa y Δb ; las cuales corresponden a los rangos entre el valor máximo y mínimo de las coordenadas de color de las 24 mediciones realizadas con cada celular en especifico. Es decir, los rangos varían de celular a celular en un mismo experimento, por eso es local. A continuación se definen las fórmulas del error local para cada coordenada cromática.

$$e_L = \frac{100}{24 \cdot \Delta L} \cdot \sum_{i=1}^{24} |\tilde{L}_i^* - \hat{L}_i^*|$$
(3.10)

$$e_a = \frac{100}{24 \cdot \Delta a} \cdot \sum_{i=1}^{24} |\tilde{a}_i^* - \hat{a_i^*}|$$
(3.11)

$$e_b = \frac{100}{24 \cdot \Delta b} \cdot \sum_{i=1}^{24} |\tilde{b}_i^* - \hat{b}_i^*|$$
(3.12)

Finalmente, el porcentaje total de error local es calculado mediante el promedio de los errores correspondientes a las tres coordenadas L^* , a^* , b^* .

$$e = \frac{e_L + e_a + e_b}{3} \qquad (\%) \tag{3.13}$$

3.4.2 Error global eG

Este error cuantifica las variaciones del modelo usando el mismo factor de normalización para todos los celulares empleados en el experimento. En este error las normalizaciones para cada coordenada son realizadas por la ΔGL , ΔGa y ΔGb . Estos rangos corresponden a la diferencia entre el valor máximo y mínimo de cada variable del total de las mediciones de color realizadas en cada condición de iluminación de un experimento en especifico. Es decir, los rangos ΔG no varían de celular a celular, sino que son calculados una sola vez para cada condición de iluminación en un mismo experimento. A continuación se definen las fórmulas para el cálculo del error global de cada variable de color.

$$eG_L = \frac{100}{24 \cdot \Delta GL} \cdot \sum_{i=1}^{24} |\tilde{L}_i^* - \hat{L}_i^*|$$
(3.14)

$$eG_a = \frac{100}{24 \cdot \Delta Ga} \cdot \sum_{i=1}^{24} |\tilde{a}_i^* - \hat{a_i^*}|$$
(3.15)

$$eG_b = \frac{100}{24 \cdot \Delta Gb} \cdot \sum_{i=1}^{24} |\tilde{b}_i^* - \hat{b}_i^*|$$
(3.16)

El error global total es:

$$eG = \frac{eG_L + eG_a + eG_b}{3}$$
 (%) (3.17)

3.4.3 Error global para cada nivel de brillo eB

El error eB también es normalizado igual para todos los celulares. Pero la diferencia del eB con el eG, es que los rangos ΔBL , ΔBa y ΔBb , son calculados especificamente a partir de los valores máximos y mínimos del total de las mediciones realizadas para cada uno de los tres niveles de brillo de la pantalla del celular. Es decir, para un mismo nivel de brillo, se utiliza el mismo rango de normalización en los seis celulares. A continuación se definen las fórmulas para el cálculo del error eB para cada coordenada cromática.

$$eB_L = \frac{100}{24 \cdot \Delta BL} \cdot \sum_{i=1}^{24} |\tilde{L}_i^* - \hat{L}_i^*|$$
(3.18)

$$eB_a = \frac{100}{24 \cdot \Delta Ba} \cdot \sum_{i=1}^{24} |\tilde{a}_i^* - \hat{a}_i^*|$$
(3.19)

$$eB_b = \frac{100}{24 \cdot \Delta Bb} \cdot \sum_{i=1}^{24} |\tilde{b}_i^* - \hat{b}_i^*|$$
(3.20)

El error global total para un nivel de brillo es:

$$eB = \frac{eB_L + eB_a + eB_b}{3}$$
 (%) (3.21)

3.5 Primeros pasos para generalizar M

Aunque el trabajo ya descrito hasta este momento es bastante exhaustivo, el objetivo de esta tesis es un poco más ambicioso, es decir, buscar una M única para todos los celulares analizados.

Pero la cantidad de datos a procesar es muy grande, tan solo en la experimentación final se realizaron: en el experimento 1 se tienen 768 mediciones de color correspondientes a 24 parches por 4 celulares por 2 referencias (colores originales del color checker bajo los iluminantes A y D65) por 4 variaciones de iluminación en el experimento; y en el experimento 2 son 1728 mediciones de color correspondientes a 24 parches por 6 celulares por 2 referencias por 2 variaciones de iluminación en el experimento por 3 niveles de brillo de pantalla. Asi, usando los métodos descritos en la sección 3.3 se calcularon 16 matrices de transferencia de color para el experimento 1 y 36 matrices para el experimento 2. Por esta razón el cálculo para generalizar se centró sólo en las mediciones del experimento 2 correspondientes a la geometría de medición 45/0, y sólo se usó el modelo lineal de M.

En el experimento 2 se calcularon 36 matrices de transferencia de color, 18 de las cuales pertenecen al iluminante A y 18 al iluminante D65. En primer lugar se ajustaron 3 matrices correspondientes a los tres niveles de brillo a una sola matriz para cada celular. Después se procedió a ajustar las 6 matrices correspondientes a los seis celulares a una sola M. Por lo que al final tendremos dos matrices de transferencia ajustadas correspondientes a los iluminantes A y D65, con las cuales podremos reproducir las 36 matrices de transferencia de color originalmente calculadas para el experimento 2.

Para lo que se recurrió a varios métodos de ajuste númerico. De los cuales presentamos a continuación los que dieron un mejor resultado.

3.5.1 Ajuste polinomial

Este método de ajuste se usó para los tres niveles de brillo de la pantalla del celular. Y la matriz de transferencia de color se representó como M(B):

$$\mathbf{M}(B) = \begin{bmatrix} M_{1,1}(B) & M_{1,2}(B) & M_{1,3}(B) & M_{1,4}(B) \\ M_{2,1}(B) & M_{2,2}(B) & M_{2,3}(B) & M_{2,4}(B) \\ M_{3,1}(B) & M_{3,2}(B) & M_{3,3}(B) & M_{3,4}(B) \end{bmatrix}$$
(3.22)

Los valores de brillo se normalizan a 1, 0.5 y 0 (cero) respectivamente por conveniencia matemática, y se representaron mediante el vector **B**:

$$\mathbf{B} = \left[\begin{array}{ccc} 1 & 0.5 & 0 \end{array} \right] \tag{3.23}$$

donde 1 indica el nivel de brillo máximo de la pantalla del celular, 0.5 indica el nivel de brillo medio y 0 (cero) el nivel de brillo mínimo.

También se generó un vector $v_{i,j}$ el cual se forma por los elementos i,j correspondientes de la matriz M(B) para cada nivel de brillo:

$$\mathbf{v}_{\mathbf{i},\mathbf{j}} = \begin{bmatrix} M_{i,j}(1) & M_{i,j}(0.5) & M_{i,j}(0) \end{bmatrix}$$
(3.24)

Entonces un ajuste del tipo polinomial se realiza utilizando los vectores **B** y $v_{i,j}$ sucesivamente hasta ajustar numéricamente los 12 elementos de la matriz.

De tal forma que el polinomio de segundo grado usado para el ajuste numérico es:

$$p(B) = p_1(B)^2 + p_2(B) + p_3$$
(3.25)

donde p(B) está en función del nivel de brillo, y donde cada polinomio se va asignando a cada elemento $M_{i,j}$ que genera la matriz ajustada.

$$M_{i,j}(B) = p(B) \tag{3.26}$$

Sustituyendo los niveles de brillo en la matriz M(B), se reproducen las 3 matrices M correspondientes a cada nivel de brillo.

Hasta este punto se calcularon 6 matrices de transferencia, cada una de las cuales reproduce el cambio en los colores para los 3 niveles de brillo de pantalla de cada celular. Lo cual se reporta en el siguiente Capítulo.

3.5.2 Ajuste serie de Fourier

En seguida se toman las 6 matrices y se ajustan usando la serie de Fourier de dos términos. El procedimiento de ajuste comienza renombrando las matrices calculadas en la sección 3.5.1 desde **M1**(B) hasta **M6**(B) las cuales quedan de la siguiente forma:

Desde

$$\mathbf{M1}(B) = \begin{bmatrix} M1_{1,1}(B) & M1_{1,2}(B) & M1_{1,3}(B) & M1_{1,4}(B) \\ M1_{2,1}(B) & M1_{2,2}(B) & M1_{2,3}(B) & M1_{2,4}(B) \\ M1_{3,1}(B) & M1_{3,2}(B) & M1_{3,3}(B) & M1_{3,4}(B) \end{bmatrix}$$
(3.27)

hasta

$$\mathbf{M6}(B) = \begin{bmatrix} M6_{1,1}(B) & M6_{1,2}(B) & M6_{1,3}(B) & M6_{1,4}(B) \\ M6_{2,1}(B) & M6_{2,2}(B) & M6_{2,3}(B) & M6_{2,4}(B) \\ M6_{3,1}(B) & M6_{3,2}(B) & M6_{3,3}(B) & M6_{3,4}(B) \end{bmatrix}$$
(3.28)

Recordemos que los elementos de dichas matrices tienen la forma polinomial siguiente:

$$p_1(B)^2 + p_2(B) + p_3 \tag{3.29}$$

De los cuales se toman unicamente los coeficientes del polinomio y se forman vectores, como ejemplo se muestra el elemento $M1_{i,j}$:

$$M1_{i,j} = \begin{bmatrix} p_{i,j,1} & p_{i,j,2} & p_{i,j,3} \end{bmatrix}$$
(3.30)

Entonces cada elemento i, j tiene vinculado un vector de coeficientes que contiene a p_1, p_2 y p_3 de forma que ahora cada coeficiente del polinomio esta identificado con su posicion k, dentro del vector:

$$M1_{i,j,k} = p_{i,j,k} (3.31)$$

es decir

$$M1_{i,j} = \begin{bmatrix} M1_{i,j,1} & M1_{i,j,2} & M1_{i,j,3} \end{bmatrix}$$
(3.32)

donde (*i*) indica el renglon de la matriz, con un rango de 1 a 3; (*j*) indica la columna de la matriz, con un rango de 1 a 4 y (k) indica la posición en el vector, con un rango de 1 a 3.

Enseguida se forma un vector **sp** correspondiente a números que indican cada uno de los 6 celulares.

$$\mathbf{sp} = \left[\begin{array}{ccccccccc} 1 & 2 & 3 & 4 & 5 & 6 \end{array} \right] \tag{3.33}$$

De manera iterativa se van ajustando númericamente a una serie de Fourier de 2 términos, el vector **sp** y los vectores $\mathbf{v}_{i,j,k}$ correspondientes, los cuales se conforman de la siguiente manera:

$$\mathbf{v}_{i,j,k} = \begin{bmatrix} M1_{i,j,k} & M2_{i,j,k} & M3_{i,j,k} & M4_{i,j,k} & M5_{i,j,k} & M6_{i,j,k} \end{bmatrix}$$
(3.34)

La serie de Fourier correspondiente a cada ajuste tiene la forma:

$$f(sp) = a_0 + a_1 \cdot \cos(sp \cdot w) + b_1 \cdot \sin(sp \cdot w) + a_2 \cdot \cos(2 \cdot sp \cdot w) + b_2 \cdot \sin(2 \cdot sp \cdot w)$$
(3.35)

Cada serie calculada se asigna a:

$$P_{i,j,k} = f(sp) \tag{3.36}$$

Y al terminar el ajuste de los tres coeficientes del polinomio de cada elemento, se va generando la matriz M(B,sp), cuyos elementos tienen la forma:

$$M_{i,j}(B,sp) = P_{i,j,1}(sp) \cdot B^2 + P_{i,j,2}(sp) \cdot B + P_{i,j,3}(sp)$$
(3.37)

Finalmente la matriz general M(B,sp) queda:

$$\mathbf{M}(B, sp) = \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \\ M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} \\ M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} \end{bmatrix}$$
(3.38)

donde por simplicidad no se escribe la dependencia con (B,sp) de cada término de la matriz, es decir se asume $M_{i,j} = M_{i,j}(B, sp)$.

3.5.3 Error de los ajustes

Para comparar los dos ajustes numéricos de las M's empleados (el polinomial y el de serie de Fourier), se requiere un indicador del desempeño (grado de error) de los ajustes. Con dicha finalidad y asi como en un articulo sobre conversion de color que fue consultado [23], se utilizó el error cuadrático medio (Root Mean Squared Error) RMSE por sus siglas en ingles. El RMSE es la raiz cuadrada del promedio del cuadrado de todo el error. El uso del RMSE es común y es una excelente métrica de error para aproximaciones numéricas. En seguida se muestran las formas de calcular el error cuadrático médio para los ajustes realizados. Este indicador en general muestra el error entre las matrices M obtenidas a partir de las matrices generadas con los ajustes numéricos. A continuación se muestra la fórmula con la que se calculó el RSME:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \hat{x}_i)}{n}}$$
(3.39)

En esta tesis se optó por normalizar el RMSE al promedio de los valores iniciales.

$$nRMSE = \frac{RMSE}{\bar{x}} \cdot 100 \qquad (\%) \tag{3.40}$$

donde (x) son los valores iniciales (coeficientes de los elementos de las matrices originalmente calculadas con el modelo lineal); (\hat{x}) son los valores calculados (coeficientes de los elementos

de las matrices generadas a partir de la matriz general M ajustada con polinomio o serie de Fourier según el caso) y (\bar{x}) es la media de los valores iniciales.

3.5.4 Diferencias de color

La $\overline{\Delta E_{ab}}$ indica la media de la diferencia de color entre los colores de referencia y los medidos en la pantalla de los celulares; y la $\overline{\Delta E'_{ab}}$ indica la media de la diferencia de color entre los colores medidos en la pantalla y los calculados por las matrices de tranferencia M correspondientes a cada caso.

Entonces se define

$$\overline{\Delta E_{ab}} = \frac{1}{24} \cdot \sum_{i=1}^{24} \Delta E_{ab}(i) \tag{3.41}$$

donde

$$\Delta E_{ab}(i) = \sqrt{(L_i^* - \tilde{L}_i^*)^2 + (a_i^* - \tilde{a}_i^*)^2 + (b_i^* - \tilde{b}_i^*)^2}$$
(3.42)

y (L_i^*, a_i^*, b_i^*) son las coordenadas cromáticas de cada parche de color de la referencia y $(\tilde{L}_i^*, \tilde{a}_i^*, \tilde{b}_i^*)$ son las coordenadas cromáticas de cada parche de color medidas sobre la pantalla del celular.

Tambien se define

$$\overline{\Delta E'_{ab}} = \frac{1}{24} \cdot \sum_{i=1}^{24} \Delta E'_{ab}(i)$$
(3.43)

donde

$$\Delta E'_{ab}(i) = \sqrt{(\hat{L}_i^* - \tilde{L}_i^*)^2 + (\hat{a}_i^* - \tilde{a}_i^*)^2 + (\hat{b}_i^* - \tilde{b}_i^*)^2}$$
(3.44)

y $(\hat{L}_i^*, \hat{a}_i^*, \hat{b}_i^*)$ son las coordenadas cromáticas de cada parche de color calculadas con M.

El promedio de la JNCD (just noticeable color difference), se calculó dividiendo las $\overline{\Delta E_{ab}}$ y $\overline{\Delta E'_{ab}}$ entre el factor 2.2 que indica que el ojo humano en realidad distingue una diferencia de color cada 2.2 unidades de ΔE_{ab} [2].
Capítulo 4

Análisis de resultados y discusión

En este capítulo se analizan los resultados obtenidos, en particular se presentan las M de los celulares. Dada la gran cantidad de datos y matrices obtenidas, por practicidad sólo se presentan resumidas en forma de tablas.

En general, se presentan los detalles de cada M para cada iluminante, su desempeño y sus ventajas y desventajas. Además se discuten los modelos y la estimación de sus parámetros.

Obtenemos una M para cada uno de los iluminantes usados en los experimentos. Y se discuten las razones de porqué el modelo obtenido es aplicable solamente para una iluminación específica.

4.1 Análisis de la reproducción de color de los celulares

En la Tabla 4.1 se observa cómo se tienen menores $\overline{\Delta E_{ab}}$ para los celulares configurados en modo de balance de blanco automático, caso que resulto contrario a lo esperado debido a que en ese experimento las muestras de color se iluminaron con una lámpara de halogeno, se esperaba que los colores tubieran menor diferencia de color al configurar las pantallas en modo de balance de blanco incandescente. Asi mismo se observó que se tienen diferencias de color muy parecidas entre las mediciones hechas a diferente resolución, por lo que se determinó que la resolución a la que se tomaban las fotografías con los celulares no era una variable que nos modificara el color de forma considerable lo que se tomó en cuenta para los experimentos subsecuentes.

Celular	Resolución de Captura	Balance de Blanco	Modo	ΔE_{ab}
	8MP	Incandescente	1	61.291
Someung G. SA	8MP	Automático	2	48.924
Samsung G. 84	13MP	Incandescente	3	62.964
	13MP	Automático	4	48.454
Same Varania I	8MP	Incandescente	5	58.144
Sony Xperia L	8MP	Automático	6	47.57

Tabla 4.1 Promedios de las diferencias de color en la reproducción de colores, Experimento preliminar 2: Mediciones con colorímetro imaging. La diferencia de color $\overline{\Delta E_{ab}}$ se define en la sección 3.5.4.

A partir de la experimentación preliminar se comenzó a confirmar lo ya reportado en trabajos anteriores [24][25][26], sobre la estrecha relación que existe entre la variación de color en pantallas de telefonos celulares, y la iluminación bajo la cual se toma la foto.

En la Tabla 4.2 se observa como al tener encendido el iluminante de la cabina de iluminación al momento de realizar las mediciones de las pantallas de los celulares, las diferencias de color fueron menores que cuando se tenia apagado el iluminante. Esto debido a que el espectro del iluminante encendido contribuye a que los colores se parezcan más a los de referencia puesto que las mediciones fueron realizadas bajo las mismas condiciones de iluminación. Para el iluminante A se observan mayores diferencias de color dependiendo si se encendia o apagaba el iluminante, para el iluminante D65 las diferencias de color fueron menores en comparacion con el iluminante A, y también variaron muy poco en relación a si el iluminante estaba apagado o encendido. También cabe mencionar que ya en este experimento al estar estar involucrados 4 celulares se destacó en general el Iphone 5 con la menores diferencias de color bajo todas las condiciones.

En la Tabla 4.3 ahora se muestran los desempeños de 6 celulares midiendo sus diferencias de color para 3 condiciones de brillo de sus pantallas y bajo dos iluminantes. Se observa

	Iluminante	Iluminante A	Iluminante D65
Celular	de cabina	$\overline{\Delta E_{ab}}$	$\overline{\Delta E_{ab}}$
UTConeM7	encendido	45.403	48.094
HICOllem/	apagado	53.292	48.157
UTCompationVE	encendido	49.809	39.159
HICSENSAUONAE	apagado	60.884	41.479
Inhone5	encendido	37.713	34.064
Iphone5	apagado	45.608	36.598
Samana C. Asa	encendido	57.067	35.911
Samsung G. Ace	apagado	68.393	37.408

Tabla 4.2 Promedios de las diferencias de color en la reproducción de colores, Experimento final 1:Geometría de medición 0/45.

nuevamente que en general se tienen menores diferencias de color cuando se miden las reproducciones en las pantallas de las fotografías tomadas utilizando el iluminante D65. También se observó que para el iluminante A en general se tiene un mejor desempeño en la reproduccion del color para el nivel de brillo medio, y para el iluminante D65 el mejor desempeño se observó en el nivel de brillo máximo, y en este caso destacando el Nokia Lumia 920 con la menor diferencia de color.

4.2 Análisis del desempeño de los modelos

Se calcularon las matrices M para todas las mediciones de la experimentación final. Por razones de espacio no se reportan todas esas matrices, pero si un análisis del desempeño entre los modelos lineal y cuadrático de M.

La Tabla 4.4 muestra los errores y diferencias de color de M para las mediciones del experimento preliminar 2. En general se observa un mejor desempeño de las matrices de transferencia de color usando el modelo cuadrático. El error local (e) y global (eG) se describen en la sección 3.4. Mientras que la diferencia de color $\overline{\Delta E'_{ab}}$ y la \overline{JNCD} se describen en la sección 3.5.4.

En la Tabla 4.5 se muestra el desempeño de los modelos de M con las mediciones bajo el iluminante A del experimento final 1.

	Brillo	Iluminante A	Iluminante D65
Celular	pantalla	$\overline{\Delta E_{ab}}$	$\overline{\Delta E_{ab}}$
	max	48.699	21.18
HTCsensationXE	med	46.43	27.748
	min	58.496	51.841
	max	79.336	28.239
Iphone6	med	54.273	19.006
	min	63.633	61.396
	max	72.594	19.904
LG-GPRO2	med	53.829	23.333
	min	61.512	57.659
	max	55.629	14.637
Nokia Lumia 920	med	48.199	22.119
	min	48.13	36.205
	max	65.907	15.227
Samsung G. Ace	med	59.837	22.871
	min	63.263	55.927
	max	53.8	20.553
Samsung G. S4	med	48.502	26.161
	min	60.789	55.889

Tabla 4.3 Promedios de las diferencias de color en la reproducción de colores, Experimento final 2:Geometría de medición 45/0.

Tabla 4.4 Desempeño de los modelos de M para el Experimento preliminar 2: Mediciones con
colorímetro imaging.

				Modelo Lineal		Modelo Cuadrático					
Celular	Resolución de Captura	Balance de Blanco	Modo	e(%)	eG(%)	$\overline{\Delta E_{ab}'}$	\overline{JNCD}	e(%)	eG(%)	$\overline{\Delta E_{ab}'}$	\overline{JNCD}
	8 MP	Incandescente	1	6.105	4.666	6.698	3.044	3.672	2.793	4.018	1.826
	8 MP	Automático	2	5.964	5.039	7.537	3.426	3.525	2.98	4.274	1.943
Samsung O. 54	13 MP	Incandescente	3	5.732	4.869	7.058	3.208	3.488	2.937	4.049	1.84
	13 MP	Automático	4	5.754	4.914	7.389	3.359	3.507	2.972	4.191	1.905
Sony Xperia L	8 MP	Incandescente	5	5.321	4.368	6.485	2.948	3.433	2.827	3.983	1.811
	8 MP	Automático	6	7.137	4.511	6.814	3.097	3.87	2.602	3.386	1.539

Se sigue observando un mejor desempeño del modelo cuadrático, pero un dato importante es que cuando se usó el modelo lineal y el cuadrático para calcular los colores reproducidos, para ambos casos el desempeño fue mejor con el iluminante encendido.

		Modelo Lineal			Modelo Cuadrático				
Celular	Iluminante	e(%)	eG(%)	$\overline{\Delta E_{ab}'}$	\overline{JNCD}	e(%)	eG(%)	$\overline{\Delta E_{ab}'}$	\overline{JNCD}
UTCaraM7	encendido	6.227	2.543	4.593	2.088	5.113	2.065	3.414	1.552
HICONEWI/	apagado	6.023	3.705	6.597	2.999	3.63	2.234	3.9	1.773
UTCooperationVE	encendido	8.564	2.624	5.222	2.374	3.865	1.197	2.054	0.934
	apagado	8.068	4.083	7.506	3.412	3.171	1.596	2.835	1.289
Inhan a 5	encendido	3.382	1.997	3.357	1.526	2.446	1.442	2.409	1.095
Ipnone5	apagado	3.297	2.824	4.635	2.107	1.806	1.555	2.526	1.148
Samsung G. Ace	encendido	10.25	3.202	5.888	2.676	4.962	1.602	2.67	1.214
	apagado	9.587	4.016	7.067	3.212	4.141	1.83	3.172	1.442

Tabla 4.5 Desempeño de los modelos de M con el iluminante A para el Experimento final 1:Geometría de medición 0/45.

En la Tabla 4.6 en comparación con la Tabla 4.5 se tiene mejor desempeño en ambos modelos cuando se utiliza el iluminante D65 en lugar del iluminante A. De igual manera, se registran menores diferencias de color en 5 de 8 ocasiones con el iluminante encendido.

Ya en el Capítulo 3 se describió la forma cómo se calcularon los errores: local (e), global (eG) y el global para cada nivel de brillo (eB). En las Tablas 4.7 y 4.8 se puede corroborar como el (eB) es el error que nos indica realmente el desempeño de los modelos. Esto se debe a que el error (e) y el error (eG) no muestran una dependencia al nivel de brillo. En las Tablas 4.7 y 4.8 se sigue teniendo un mejor desempeño del modelo cuadrático aunque viendolo en terminos de la \overline{JNCD} la cual tiene más relación con lo que un ojo humano percibiria, las diferencias entre el modelo lineal y el cuadrático son relativamente bajas. Basandonos en la \overline{JNCD} se identifica un mejor desempeño de ambos modelos en el nivel de brillo mínimo pues se observa una disminución gradual en las diferencias de color conforme se baja el nivel de brillo, es decir que las mayores \overline{JNCD} se identifican en el nivel de brillo máximo. Respecto al error (eB), el cual sólo evalua a nivel númerico los modelos, no se observa la misma tendencia que en las

		Modelo Lineal			Modelo Cuadrático				
Celular	Iluminante	e(%)	eG(%)	$\overline{\Delta E_{ab}'}$	\overline{JNCD}	e(%)	eG(%)	$\overline{\Delta E_{ab}'}$	\overline{JNCD}
UTConoM7	encendido	6.012	2.854	4.683	2.129	4.047	1.888	2.914	1.324
HICONEWI7	apagado	4.1	2.349	3.946	1.794	2.354	1.313	2.035	0.925
UTConnectionVE	encendido	9.266	3.464	6	2.727	3.82	1.411	2.471	1.123
HICSENSAUONAE	apagado	8.878	4.737	8.216	3.734	3.714	1.981	3.459	1.572
Inhona5	encendido	3.708	2.364	3.864	1.756	2.038	1.293	1.988	0.904
iphones	apagado	4.246	3.371	5.424	2.466	1.562	1.242	1.862	0.846
Someung C. Aco	encendido	8.689	3.169	5.286	2.403	4.281	1.556	2.404	1.093
Samsung G. Ace	apagado	8.796	4.334	7.576	3.444	3.956	1.918	3.008	1.367

Tabla 4.6 Desempeño de los modelos de M con el iluminante D65 para el Experimento final 1:Geometría de medición 0/45.

 \overline{JNCD} . En general el peor desempeño se observa en el nivel de brillo medio con (eB) grandes, y el mejor desempeño se sigue observando en el nivel de brillo mínimo.

Para una mejor comprensión se puede observar el ejemplo del cálculo de los modelos lineal y cuadrático asi como de los errores calculados en el Apéndice A.

4.3 La M general propuesta.

En esta sección se presenta una M general, resultado de procesar las mediciones del experimento final 2 para la geometría 45/0. En este caso sólo se uso el modelo lineal para M. En las Sección 3.5.1 y 3.5.2 se describió el procedimiento para calcular la matriz M general, la cual es valida para diferentes niveles de brillo y para 6 diferentes smartphones. Esta matriz es función de las variables B (nivel de brillo) y sp (smartphone) y tiene la forma siguiente:

$$\mathbf{M}(B, sp) = \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \\ M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} \\ M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} \end{bmatrix}$$
(4.1)

Es importante mencionar que se realizaron pruebas para ajustes con polinomios de segundo, tercer, cuarto y quinto grado los cuales tuvieron un desempeño similar y que por simplicidad matemática se determino utilizar el ajuste con el polinomio de segundo grado, cabe mencionar

Modelo Lineal Modelo Cuadrático Celular Brillo e(%) eG(%) eB(%) $\overline{\Delta E'_{ab}}$ $\overline{JNCD} + e(\%)$ eG(%) eB(%) $\overline{\Delta E'_{ab}}$ \overline{JNCD} 3.776 3.318 1.968 1.9728.307 2.025 1.231 1.234 5.005 2.275 max HTCsensationXE 1.374 3.416 1.477 2.132 6.24 2.836 2.129 0.949 3.764 1.711 med 1.737 3.409 1.55 2.347 0.528 1.075 2.019 0.918 3.846 0.85 min 3.398 2.947 2.957 10.321 4.691 1.508 1.32 1.324 4.544 2.065 max Iphone6 1.931 2.803 6.766 3.075 1.534 0.862 1.253 2.991 1.36 med 3.457 2.078 0.945 2.012 0.282 min 3.686 0.547 1.112 0.574 0.968 0.44 3.995 2.813 2.82 11.113 5.051 1.754 1.247 1.25 4.744 2.156 max LG-GPRO2 3.996 1.897 2.75 7.526 3.421 1.745 0.839 1.217 3.205 1.457 med min 3.9 0.707 1.434 2.948 1.34 2.233 0.398 0.8081.461 0.664 2.845 2.104 2.108 8.371 3.805 1.718 1.261 1.265 4.817 2.189 max 2.5 6.871 3.123 1.711 1.021 Nokia Lumia 920 2.855 1.722 1.479 3.986 1.812 med 2.922 1.327 2.67 5.388 2.449 1.694 0.76 1.547 3.032 1.378 min 3.176 1.913 1.919 6.926 3.148 2.405 1.445 1.45 5.207 2.367 max Samsung G. Ace 2.282 5.768 2.622 1.922 med 3.274 1.572 2.376 1.142 1.654 4.228 1.079 2.543 0.47 3.517 0.661 1.344 2.375 0.965 1.823 0.828 min 2.714 1.741 1.746 6.302 2.865 1.337 0.873 0.876 3.18 1.445 max Samsung G. S4 2.698 1.303 1.89 5.005 2.275 1.302 0.643 0.935 2.356 1.071 med

1.291

min

3.328

0.637

2.622

1.192

1.918

0.359

0.729

1.326

0.603

Tabla 4.7 Desempeño de los modelos de M con el iluminante A para el Experimento final 2:Geometría de medición 45/0.

Modelo Lineal Modelo Cuadrático Celular Brillo e(%) eG(%) eB(%) $\overline{\Delta E'_{ab}}$ $\overline{JNCD} + e(\%)$ eG(%) eB(%) $\overline{\Delta E'_{ab}}$ \overline{JNCD} 2.568 1.787 1.793 6.532 2.969 1.806 1.258 1.261 4.618 2.099 max HTCsensationXE 1.33 3.323 2.548 1.25 1.816 4.609 2.095 1.858 0.914 med 1.51 2.757 1.353 2.452 1.114 2.023 0.493 0.996 1.817 0.667 0.826 min 4.147 3.225 3.236 11.074 5.034 1.473 1.163 1.168 3.913 1.778 max Iphone6 4.239 2.13 3.095 7.231 3.287 1.522 0.774 1.128 2.555 1.161 med 2.011 0.914 1.711 min 3.662 0.503 1.02 0.216 0.438 0.734 0.334 4.547 3.012 3.02 11.279 5.127 1.702 1.12 1.122 4.248 1.931 max LG-GPRO2 4.505 1.956 2.837 7.364 3.347 1.715 0.741 1.073 2.815 1.279 med min 4.29 0.733 1.482 2.912 1.323 2.184 0.353 0.719 1.305 0.593 3.49 2.262 2.267 9.141 4.155 2.38 1.579 1.584 5.585 2.539 max 7.416 3.371 2.415 1.276 Nokia Lumia 920 3.531 1.826 2.646 1.853 4.543 2.065 med 3.585 1.395 2.815 5.748 2.613 2.323 0.916 1.85 3.36 1.527 min 3.584 2.274 2.281 8.105 3.684 2.253 1.447 1.452 4.942 2.246 max Samsung G. Ace 2.665 6.601 3 2.259 med 3.599 1.835 1.166 1.696 3.996 1.816 0.472 1.493 1.669 3.62 0.738 2.813 1.279 2.351 0.958 0.759 min 2.811 1.87 1.876 7.122 3.237 1.294 0.861 0.863 3.598 1.635 max Samsung G. S4 2.936 1.499 2.171 5.738 2.608 1.27 0.645 0.931 2.793 1.27 med 3.224 1.367 2.834 1.288 0.327 1.398 min 0.676 1.692 0.668 0.636

Tabla 4.8 Desempeño de los modelos de M con el iluminante D65 para el Experimento final 2:Geometría de medición 45/0.

que a partir del grado seis del polinomio, se observó que el ajuste comenzaba a perder efectividad. De igual manera se realizaron pruebas del ajuste con la serie de Fourier de un término, dos términos y tres términos, para lo que se determino utilizar la serie con dos términos pues tuvo un mejor desempeño el ajuste que cuando la serie solamente tenía un término, y al realizar pruebas de ajuste con la serie de tres términos no se mejoro el resultado y se observo que al utilizarla aumentaría la cantidad de datos y la complejidad de las matrices.

En el Apéndice B se incluyen ejemplos de los programas hechos en el software MatLab, para realizar los ajustes polinomial y de serie de Fourier a partir de los cuales se llego a las matrices M generales para el iluminante A y para el iluminante D65. En las Tablas 4.9 y 4.10 se muestran los 18 coeficientes de ajuste de cada uno de los 12 elementos $M_{i,j}$ de las dos matrices propuestas. Los elementos de la matriz se conforman por 3 coeficientes $p_{i,j,k}$ del polinomio de segundo grado y que a su vez contienen los 6 coeficientes de la serie de Fourier a la cual fueron ajustados los datos.

4.3.1 Análisis del error de los ajustes

Para evaluar el error de los ajustes numéricos de las matrices M generales calculadas, usamos el nRMSE descrito en la sección 3.5.3. De esta manera se tiene un indicador del desempeño de los ajustes numéricos realizados, se muestra el porcentaje del error cuadrático medio normalizado en la Tabla 4.11. Se observarón valores de nRMSE muy cercanos a cero por ciento, con la excepción del elemento del polinomio $p_{1,3,1}=2.26376111$, y el cual aún es un valor aceptable de ~ 2%.

En la Tabla 4.12 en general se observaron valores de porcentaje de nRMSE mayores a los observados en la Tabla 4.11, en especial el elemento del polinomio $p_{1,3,3}$ con un valor de nRMSE de ~ 15.8%.

$M_{i,j}$	$p_{i,j,k}$	a_0	a_1	b_1	a_2	b_2	W
	1	-0.38240648	-0.04291902	0.26863665	0.06872027	0.17601029	-1.10228444
1,1	2	1.25130113	-0.33632358	0.35045454	-0.361119	-9.90E-06	1.19962394
	3	0.3956266	0.15996668	-0.02043708	0.14926433	0.11706696	1.28096446
	1	0.00866351	-0.01669891	-0.00238142	0.0133177	-0.01630298	1.2902331
1,2	2	-0.04127967	0.04717123	0.10659799	0.04798727	-0.04521649	2.39911013
	3	-0.01067843	-0.00379482	0.02321491	-0.00021362	-0.00132362	2.58513416
	1	0.01306788	0.01465024	0.13658647	-0.07685488	0.10339272	2.13054539
1,3	2	-0.05430054	0.07009287	-0.01817429	0.02803266	0.00966461	2.32102362
	3	-0.00962552	0.00407519	0.00289129	-0.00890949	0.0054331	2.45377188
	1	6.95695705	-5.32625221	1.24767754	-0.93185921	-0.7140937	1.23435308
1,4	2	-10.045269	9.82016717	-5.32444155	-3.26205153	-7.45469528	1.20629001
	3	-9.48384857	0.61396333	-3.78410704	1.11618438	-0.32351453	2.66770738
	1	1.01827668	0.10948939	-1.38767747	-0.4343549	-0.04775594	0.48057567
2,1	2	-0.38699435	0.08533574	0.14420757	-0.07067641	-0.02566423	2.83200769
	3	-0.14306432	-0.04432876	0.01822688	-0.02730871	-0.01442207	1.26451814
	1	-0.23352722	0.00660432	-0.15242667	0.1085311	-0.08350887	1.20433014
2,2	2	1.03797292	-0.24375346	0.16370713	-0.16964691	-0.25271043	1.28129755
,	3	0.46129064	0.17617753	-0.04330436	0.20107876	0.00858726	1.23588191
	1	0.05311407	-0.02018056	0.03749107	-0.0373961	0.00292887	1.12488758
2,3	2	-0.1981075	0.09533995	-0.07995243	0.04651816	0.09121696	1.22289351
	3	-0.08616477	-0.04814815	0.00601914	-0.03206968	0.0293951	2.44599908
	1	-1.76153679	5.96990967	-9.25831116	-3.83406481	-11.0749072	2.13074199
2,4	2	8.48018595	-4.5285699	0.98375202	-2.80411983	5.95274169	2.2988934
	3	2.86282482	0.35238476	-0.3993943	0.41846644	2.74640465	1.51089765
	1	0.23879154	0.04113002	0.18662464	-0.03802313	0.17608902	1.05585542
3,1	2	-0.88361783	0.2461521	-0.22024287	0.39740976	-0.00290489	1.17584399
	3	-0.4018785	-0.15052091	-0.01891485	-0.09699214	-0.05982445	1.29153765
	1	0.07444672	-0.02032054	0.02899425	0.0105806	0.04544911	1.029596
3,2	2	-0.24396013	0.13558755	0.07403507	0.07041601	-0.10171684	1.12396206
	3	-0.10998225	-0.03701099	0.05789281	-0.0317146	-0.03390206	1.26788667
	1	-0.31525926	0.05764505	-0.22155283	0.17892325	-0.10258363	1.18243132
3,3	2	1.32204352	-0.40126375	0.27732843	-0.32146234	-0.3454858	1.25535668
	3	0.60083506	0.24344789	-0.01923087	0.26283617	0.02011664	1.247981
	1	0.37503222	1.19465647	2.60402082	-0.48498453	-1.51293101	1.24777006
3,4	2	1.60982378	-1.32545669	6.06037757	-2.80783318	5.00538777	2.54451719
	3	2.28245084	0.89544571	-1.71706913	2.5447234	0.08285647	1.14894053

Tabla 4.9 Coeficientes de la M general para el iluminante A

M	p						
(i,j)	(k)	a_0	a_1	b_1	a_2	b_2	w
	1	-0.37182515	-0.25912096	-0.10964324	0.22274829	0.02081348	2.51268438
1,1	2	1.19502529	-0.15290052	0.14900476	0.45282129	0.24082037	1.26724006
	3	0.31956589	-0.18230481	-0.11416783	-0.12831572	0.11836179	2.63239874
	1	-0.008036	0.01721988	-0.00918362	0.00579592	0.00383916	1.13818896
1,2	2	0.02489204	-0.0540946	-0.00046165	-0.00686537	-0.01171178	1.32367182
	3	-0.00596096	0.00304432	0.00446368	-0.01698496	0.00029521	2.38279202
	1	0.01154156	-0.02003059	0.02315206	0.01766499	0.00764486	1.01543136
1,3	2	-0.06562241	-0.07806038	-0.05695204	-0.0635602	0.04969895	0.82932436
	3	-0.13430409	-0.01827741	-0.19077649	0.07242978	-0.00085631	-0.45477387
	1	6.86306307	4.23324036	4.69608963	1.48610767	-1.84036389	2.58293147
1,4	2	-9.35296833	-4.44705721	2.22751073	-1.31653168	-5.31833966	2.23539215
	3	23582965.4	5.17260402	-12983.5536	-23582961.3	-27461.7716	3.14174942
	1	0.02022367	-0.02772254	0.02111288	-0.01847295	-0.04507836	1.12621438
2,1	2	0.29787311	0.29357123	-0.58597921	-0.13372615	-0.31717585	0.61817312
	3	-0.01575175	0.00732186	-0.01812036	0.01452332	-0.02115169	0.81741642
	1	-0.27286961	-0.18435992	0.00445461	0.26055651	0.00073682	2.49227905
2,2	2	1.03768339	0.39568078	0.0024084	-0.15952709	-0.1908256	2.50743824
	3	0.45459297	0.13157251	-0.07881197	0.03324961	-0.17117856	1.46427394
	1	0.03195639	0.03935138	-0.00026255	0.0477166	0.05432472	1.24118851
2,3	2	-0.10671613	-0.1041713	-0.01384351	-0.13842882	-0.08215383	1.23719429
	3	-0.02750506	-0.03665628	-0.02586358	0.00203221	0.00618981	2.43926593
	1	-79331614.2	-2.52592186	29144.5734	79331609.7	22612.8505	3.14162777
2,4	2	222307557	5.57021874	-49707.3157	-222307543	-66458.9523	3.14163761
	3	1.46961921	0.55336995	-0.89824378	0.10681327	0.49525717	1.21669801
	1	0.01134297	-0.00999706	0.10486247	-0.0028214	0.05115386	2.54371397
3,1	2	-0.05801126	-0.02431731	0.07177277	-0.06163839	-0.14992568	1.20776222
	3	-0.04905054	0.01056563	0.00667131	-0.04073854	0.01438049	0.91467394
	1	-153.15526	206.205219	22.5333628	-52.9345982	-12.0115121	0.06418051
3,2	2	-0.25742996	-0.16190781	0.2990428	-0.02768877	0.11543718	0.54159152
	3	-0.00723121	0.03053515	0.00861401	-0.02944393	0.00149891	2.50833707
	1	-0.31813675	-0.22730981	-0.06500719	0.25767249	0.02117381	2.50021037
3,3	2	1.17406903	-0.16204649	0.24638087	0.46733592	0.10477849	1.24217412
	3	0.51468304	0.09276261	-0.07803688	0.03631535	-0.29985703	1.53078012
	1	-1.33111881	-0.29384012	-2.15257173	1.25928638	-2.51959656	2.47243441
3,4	2	3.85907283	-0.0176749	3.18155632	-1.88310156	3.3518514	2.45339252
	3	2.94741476	-0.82060953	-1.1186351	-0.68847813	-1.56593686	1.3052077

Tabla 4.10 Coeficientes de la M general para el iluminante D65

fidifiliance 73.						
M	$p_{i,j,1}$	$p_{i,j,2}$	$p_{i,j,3}$			
(i,j)	nRMSE(%)	nRMSE(%)	nRMSE(%)			
1,1	5.53E-06	3.80E-09	9.09E-10			
1,2	0.00448738	0.00393847	0.01131359			
1,3	2.26376111	0.00435442	0.02091097			
1,4	5.56E-10	2.16E-09	8.68E-10			
2,1	0.0046603	2.08E-05	2.14E-07			
2,2	1.51E-09	8.85E-10	1.29E-06			
2,3	0.00028353	5.99E-10	0.00230781			
2,4	8.62E-10	4.63E-08	2.42E-06			
3,1	2.02E-06	8.79E-07	4.30E-09			
3,2	2.57E-05	1.01E-07	6.50E-06			
3,3	7.49E-07	1.16E-09	2.31E-07			
3,4	1.51E-09	1.26E-06	1.71E-09			

Tabla 4.11 Porcentaje de error de ajuste RMSE normalizado de los elementos de la M general para el iluminante A.

Tabla 4.12Porcentaje de error de ajuste RMSE normalizado de los elementos de la M general para eliluminante D65.

M	$p_{i,j,1}$	$p_{i,j,2}$	$p_{i,j,3}$
(i,j)	nRMSE(%)	nRMSE(%)	nRMSE(%)
1,1	8.88E-10	4.06E-05	9.27E-09
1,2	0.09282096	1.08E-06	0.06487684
1,3	3.46036536	4.96829733	15.8543397
1,4	7.60E-08	7.30E-08	1.44266759
2,1	0.02295245	0.06018477	0.02638168
2,2	5.41E-05	3.12E-08	0.75335461
2,3	6.06E-05	5.91E-05	1.26E-04
2,4	7.75176304	0.01029372	6.99E-10
3,1	3.83E-04	1.58E-05	0.00124321
3,2	2.50004515	0.00304003	1.17E-07
3,3	4.74E-06	8.07E-10	1.14094106
3,4	1.06E-07	4.86E-10	9.87E-10

Conclusiones

En esta tesis se propuso una matriz de transferencia de color M para smartphones. La matriz M permite representar matemáticamente la relación entre los colores en la pantalla, de una fotografía tomada con el teléfono celular (smartphone), y los colores de la escena real fotografiada.

Se siguió todo un proceso para llegar finalmente a dicha matriz de transferencia de color M. Primeramente, se revisaron conceptos teóricos de utilidad tales como, luz, visión, color y reproducción digital del color. De manera específica se estudiaron conceptos que fueron clave para la realización de la tesis como la diferencia entre radiometría y fotometría, fuentes de luz y sus características, la estructura y funcionamiento del ojo humano. Así como, diversos aspectos sobre colorimetría y estándares de la CIE. Conceptos básicos sobre captura digital de imágenes y dispositivos de visualización de imágenes también fueron revisados.

Después de revisar y entender los conceptos teóricos, se fueron realizando paulatinamente 4 experimentos diferentes para medir los colores reproducidos en las pantallas de los celulares. De éstos, 2 experimentos fueron preliminares y 2 experimentos fueron finales. Los experimentos preliminares fueron mediciones de color con el espectrofotómetro y con el colorímetro imaging. Estas mediciones sirvieron como práctica de mediciones de color, además para identificar las variables involucradas y mejorar el diseño de los experimentos finales. En cuanto a la experimentación final, se realizaron mediciones de color con otro colorímetro imaging y una cabina de iluminación durante la estancia de investigación realizada en el Graduate Institute of Color and Illumination Technology (GICIT) en Taiwán. En ese laboratorio los experimentos fueron llevados a cabo de manera tal que las mediciones colorimétricas realizadas y los modos

de configuración de los experimentos, proporcionaran datos confiables y con las características convenientes para ser analizados y procesados.

Finalmente, se procesaron los datos colorimétricos con la ayuda de programas propios de los equipos de medición y otros como MatLab y Mathcad. Se analizó la reproducción de color de los celulares y se evaluó su desempeño. Y por último se calcularon las matrices de transferencia de color M para todos los smartphones medidos considerando varios modos de operación, resolución de la imagen, balance de blanco, nivel de brillo de la pantalla e iluminación. Se mostró que las matrices M calculadas reproducen con buena precisión los colores reproducidos en la pantalla de los celulares estudiados, es decir con una pequeña diferencia de color $0.334 < \overline{JNCD} < 5.127$. En general los errores entre los valores del experimento y los calculados mediante M fueron bastante pequeños, de igual forma los nRMSE de los ajustes realizados para generalizar la matriz M fueron pequeños (promedio 0.56%, mínimo ~ 0% y máximo ~ 15.8%), por lo cual se puede decir que se logró el objetivo de la tesis.

Propusimos dos modelos matemáticos para la matriz M, el lineal y el cuadrático, que relacionan las coordenadas cromáticas del sistema de color CIELAB. Aunque el análisis de resultados se centró en el modelo lineal, como trabajo futuro se podrían calcular y evaluar las matrices M con el modelo cuadrático, las cuales según lo observado tendrían un nivel de error menor. Adicionalmente, se podría utilizar el CIECAM02 (otro sistema de color) y sus coordenadas en lugar del CIELAB ya que este último no contempla aspectos de adaptación del sistema visual humano (SVH) ni de la iluminación ambiente.

Otro posible trabajo a futuro es usar redes neuronales en lugar de una matriz de transferencia de color. Recientemente se han utilizado redes neuronales [17][27] para realizar conversiones de color más precisas, por lo que pensando en aplicaciones referentes a fotografía y video capturados con teléfonos celulares convendría realizar más investigación al respecto para observar su desempeño y viabilidad de uso. Cabe mencionar que a partir de los conceptos, conocimientos y habilidades adquiridos al realizar este trabajo de tesis, ahora se tiene la posibilidad de realizar otros trabajos de investigación en lo que respecta a cuestiones relacionadas a color, teléfonos celulares, fotografía, pantallas de dispositivos móviles, etc. Inclusive se podría colaborar con otros investigadores como los que recientemente realizaron trabajos sobre la consistencia de color en pantallas de teléfonos celulares para su aplicación en exámenes visuales de color [28]; o en trabajos como en el que analizaron el impacto de la luz de la pantalla del celular en el ciclo circadiano del observador, en condiciones de baja iluminación (iluminación nocturna), donde encontraron que la parte espectral del color azul es la que más afecta [29].

Apéndice A: Códigos Mathcad

Ejemplo de código para calculo de matriz de transferencia con el modelo lineal:

Ejemplo de código para calculo de matriz de transferencia con el modelo cuadrático:

Apéndice B: Códigos Matlab

Ejemplo del programa utilizado para el calculo de la matriz ajustada para los tres niveles de brillo de pantalla, utilizando ajuste polinomial de grado 2 para los iluminantes A y D65.

```
%Alumno: Jorge Alberto Rios Viramontes
%Programa: Ajuste de 3 matrices de intensidad y de los dos tipos de
%iluminacion A y D65, y calculo del RMSE
clear all
%clc
maxA=[1.317 0.036 -1.545*10<sup>-3</sup> -28.826
-0.354 1.096 -0.169 10.796
-0.929 -0.43 1.348 12.316];
medA=[0.944 0.022 3.847*10^-3 -23.996
-0.263 0.806 -0.124 8.025
-0.679 -0.319 0.994 9.114];
minA=[0.427 0.012 4.265*10^-3 -14.289
-0.14 0.429 -0.063 3.767
-0.347 -0.157 0.524 4.077];
maxD65=[1.245 0.06 8.088*10^-3 -22.864
-0.023 1.234 -0.12 6.348
-0.168 - 0.112 1.504 6.079];
medD65=[0.87 0.035 7.699*10^-3 -19.346
-2.006*10^-3 0.887 -0.093 3.442
-0.12 - 0.087 1.086 4.386];
minD65=[0.405 0.014 7.675*10^-3 -12.922
-2.103*10^-3 0.48 -0.039 1.392
-0.06 - 0.035 0.584 2.427];
%Ajuste de los tres niveles de brillo con el Iluminante A
[m,n] = size(maxA);
I=[1;0.5;0];%niveles de intensidad de brillo
syms nb %para que deje a nb nivel de brillo como simbolo
k=1;
```

```
for j=1:n
        X=[maxA(i,j);medA(i,j);minA(i,j)];
        f=fit(I, X, 'poly2');%ajuste polinomial grado 2
        p=coeffvalues(f);%valores de los coeficientes para el ajuste
        MF(i,j)=p(1)*nb^2+p(2)*nb+p(3);%ajuste polinomial
        MCA(k,1)=p(1);%va generando la lista de coeficientes
        MCA(k, 2) = p(2);
        MCA(k,3)=p(3);
       k=k+1;
    end
end
MFA=vpa(MF,3);%para quitar resultados en fracciones y 3 digitos
MFAmax=subs(MFA,nb,1);%substituye nb=1 y evalua
MFAmed=subs(MFA,nb,0.5);
MFAmin=subs(MFA,nb,0);
%Ajuste de los tres niveles de brillo con el Iluminante D65
k=1;
for i=1:m
    for j=1:n
        X=[maxD65(i,j);medD65(i,j);minD65(i,j)];
        f=fit(I, X, 'poly2');%ajuste polinomial grado 2
        p=coeffvalues(f);%valores de los coeficientes para el ajuste
        MF(i,j)=p(1)*nb^2+p(2)*nb+p(3);%ajuste polinomial
        MCD65(k,1)=p(1);%va generando la lista de coeficientes
        MCD65(k, 2) = p(2);
        MCD65(k,3)=p(3);
       k=k+1;
    end
end
MFD65=vpa(MF,3);%para quitar resultados en fracciones y 3 digitos
MFD65max=subs(MFD65,nb,1);%substituye nb=1 y evalua
MFD65med=subs(MFD65,nb,0.5);
MFD65min=subs(MFD65,nb,0);
%Calculo del error cuadratico medio (Root Mean Squared Error)para
%evaluar la calidad del ajuste
for i=1:m
    for j=1:n
          RMSEA(i,j)=sqrt((((maxA(i,j)-MFAmax(i,j))^2)+((medA(i,j)...
                     -MFAmed(i,j))^2)+((minA(i,j)-MFAmin(i,j))^2))/3);
```

```
%RMSEA normalizado
          rg=[maxA(i,j);medA(i,j);minA(i,j)];
          rango=range(rg,1);%me da el rango de la columna, el max-min
          %Normalizado dividido entre el rango de los datos ajustados
          NRMSEA(i,j)=((RMSEA(i,j))/rango)*100;%para que de porcentaje
          %Normalizado dividido entre la media de los datos ajustados
          nRMSEA(i,j)=((RMSEA(i,j))/abs(mean(rg)))*100;
    end
end
%RMSEA %Matriz de errores cuadraticos medios de cada elemento de las matrices
RMSEAprom=mean(mean(RMSEA,2));%Error cuadratico medio promedio de la matriz
NRMSEAprom=mean(mean(NRMSEA,2));%promedio del RMSE normalizado en porciento
nRMSEAprom=mean(mean(nRMSEA,2));
for i=1:m
   for j=1:n
          RMSED65(i,j)=sqrt((((maxD65(i,j)-MFD65max(i,j))^2)+((medD65(i,j)...
                       -MFD65med(i,j))^2)+((minD65(i,j)-MFD65min(i,j))^2))/3);
          %RMSED65 normalizado
          rg=[maxD65(i,j);medD65(i,j);minD65(i,j)];
          rango=range(rg,1);%me da el rango de la columna, el max-min
          %Normalizado dividido entre el rango de los datos ajustados
          NRMSED65(i,j)=((RMSED65(i,j))/rango)*100;%para que de porcentaje
          %Normalizado dividido entre la media de los datos ajustados
          nRMSED65(i,j)=((RMSED65(i,j))/abs(mean(rg)))*100;
    end
end
%RMSED65 %Matriz de errores cuadraticos medios de cada elemento de las matrices
RMSED65prom=mean(mean(RMSED65,2));%Error cuadratico medio promedio de la matriz
NRMSED65prom=mean(mean(NRMSED65,2));%promedio del RMSE normalizado en porciento
nRMSED65prom=mean(mean(nRMSED65,2));
%Muestras matrices con ajustes y sus RMSE
MFA
RMSEA;
RMSEAprom;
NRMSEA
NRMSEAprom
nRMSEA
nRMSEAprom
```

MFD65 RMSED65; RMSED65prom; NRMSED65 NRMSED65prom nRMSED65 nRMSED65prom MCA MCD65

Ejemplo del programa para el calculo de la matriz ajustada a partir de las seis matrices correspondientes a cada celular, utilizando ajuste con serie de fourier de dos términos para el iluminante A.

```
%Alumno: Jorge Alberto Rios Viramontes
%Programa: Ajuste de 6 matrices(ajustadas a poly2, tres coeficientes)
%para la iluminacion A, y calculo del RMSE(Ajustando Fourier 2 terminos)
%OPTIMIZADO
%a(:,:,1)=HTCsensationXE
%a(:,:,2)=Iphone6
%a(:,:,3)=LG-PRO2
%a(:,:,4)=Nokia Lumia 920
%a(:,:,5)=SamsungGT-S5830M
%a(:,:,6)=SamsungS4
clear all
clc
a(:,:,1) = [-0.2880]
                      1.1780
                                0.4270
    0.0080
              0.0160
                        0.0120
   -0.0099
              0.0041
                        0.0043
    9.7540
            -24.2910
                      -14.2890
    0.0640
             -0.2780
                       -0.1400
   -0.1740
             0.8410
                        0.4290
    0.0320
             -0.1380
                       -0.0630
   -2.9740
             10.0030
                        3.7670
    0.1640
             -0.7460
                       -0.3470
             -0.3750
    0.1020
                        -0.1570
   -0.2320
              1.0560
                        0.5240
   -3.6700
             11.9090
                        4.0770];
a(:,:,2) = [-0.4260]
                      1.7050
                                0.2030
    0.0420
             -0.1830
                        -0.0320
```

0.0130	-0.0675	-0.0055
12.3880	-13.8760	-6.1020
0.0480	-0.4000	-0.0920
-0.2460	1.4950	0.3340
0.1000	-0.4040	-0.0810
-2.3400	12.1040	2.2200
0.2400	-1.2140	-0.2730
0.0660	-0.1870	-0.0260
-0.4060	2.0410	0.4480
2.3100	-5.8890	0.0260];

a(:,:,3)=[-	0.2700	1.2290	0.2910
0.0080	-0.0760	-0.0280	
0.0280	-0.1020	-0.0170	
5.7020	1.1970	-7.1780	
0.0400	-0.4240	-0.1450	
-0.1700	1.0910	0.3600	
0.0560	-0.1780	-0.0480	
-1.0660	7.9650	2.4050	
0.2220	-1.0630	-0.3440	
0.1000	-0.4520	-0.1310	
-0.2680	1.3980	0.4530	
-0.5880	3.2460	1.4270]	;

a(:,:,4) = [-0]	.0480	0.5260	0.7250
-0.0010	0.0019	-0.0071	
0.0040	-0.0180	-0.0170	
0.7740	1.5310	-11.9780	
0.0100	-0.1730	-0.2150	
-0.0520	0.5900	0.8360	
0.0020	-0.0770	-0.1770	
0.9360	1.9680	3.7880	
-0.0400	-0.2940	-0.6650	
-0.0020	-0.0670	-0.1790	
0.0200	0.6020	1.1050	
1.1040	0.1100	5.0650]	;

a(:,:,5)=[-0.8240 0.3610 1.7220 0.0452 -0.0182 0.0059 0.0620 -0.1270 -0.0180 6.6600 -14.0520 -10.8430 0.1860 -0.4670 -0.1250 -0.5100 1.1290 0.3260

0.1040	-0.2180	-0.0800	
-1.1380	6.6350	2.3980	
0.5920	-1.2740	-0.4110	
0.1240	-0.2420	-0.0590	
-0.6980	1.5170	0.4620	
2.7000	0.4260	-0.5470];	
a(:,:,6)=[-0.	.5640	1.4160 0	.3000
-0.0122	0.0303	-0.0021	
0.0300	-0.0790	-0.0110	

5.8000	-14.6640	-8.2170
0.2040	-0.5040	-0.1210
-0.4660	1.2370	0.3750
0.0320	-0.1660	-0.0670
-6.0900	13.8250	0.8990
0.2700	-0.8530	-0.3540
0.0520	-0.1280	-0.0510
-0.5480	1.5080	0.4880
2.5800	-0.2540	2.9820];

```
v=[1 2 3 4 5 6];
```

```
P=perms(v);%crea una matriz de todas las permutaciones posibles
for per=1:720
    orden=P(per,:);%agarras el orden por renglon
    cel1A=a(:,:,orden(1));
    cel2A=a(:,:,orden(2));
    cel3A=a(:,:,orden(3));
    cel4A=a(:,:,orden(4));
```

```
cel5A=a(:,:,orden(5));
```

```
cel6A=a(:,:,orden(6));
```

```
%Ajuste de los seis celulares con el Iluminante A
[m,n] = size(cel1A);
X=[1;2;3;4;5;6];% num asignados a cada celular para el eje x del ajuste
syms nb
syms sp %para que deje a sp smartphone como simbolo
%A continuacion se forma una matriz de 36 renglones y 6 columnas con los
%coeficientes del ajuste
k=1;
for i=1:m
    for j=1:n
```

```
Y=[cel1A(i,j);cel2A(i,j);cel3A(i,j);cel4A(i,j);cel5A(i,j);cel6A(i,j)];
f=fit(X, Y, 'fourier2');%ajuste series de fourier con dos terminos
```

```
p=coeffvalues(f);%valores de los coeficientes para el ajuste
     f(x)=a0+a1*cos(x*w)+b1*sin(x*w)+a2*cos(2*x*w)+b2*sin(2*x*w)
                         p(3)=b1 p(4)=a2 p(5)=b2 p(6)=w
     % p(1)=a0
                 p(2)=a1
     MCAfourier(k,:)=[p];%va generando la lista de 6 coeficientes del
                          %ajuste fourier poniendo el vector p como renglon
     k=k+1;
    end
end
%Para acomodar en la forma de la matriz de 3 por 4(modelo lineal) con los
%ajustes
k=1;
for i=1:3
    for j=1:4
        for q=1:3 %este ciclo genera y acomoda los 6 coeficientes del
                  %ajuste en los 3 del ajuste poly2
        p=MCAfourier(k,:); %va agarrando los coef de los renglones
        c(q)=p(1)+p(2)*cos(sp*p(6))+p(3)*sin(sp*p(6))+p(4)*cos...
        (2*sp*p(6))+p(5)*sin(2*sp*p(6));
        k=k+1;
        end
        MFIA(i,j)=c(1)*nb^2+c(2)*nb+c(3);%ajuste poly Matriz ilum A
        %se guardan en lista que va recorriendo los elementos de la matriz
        %de izquierda a derecha y de arriba hacia abajo
    end
end
MFIA=vpa(MFIA,6);%convierte a numero decimal con 6 digitos de precision
%Ahora subtituyo los seis casos de sp, es decir genero las matrices
%recuperadas con los 3 coeficientes del ajuste polinomial
%Para el celular #1
k=1:
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,1);%al sustituir sp=1 es el caso del cel1
      sust=vpa(sust,3);
      r=coeffs(sust);%renglon de los 3 coef sin variables simbolicas
      r=fliplr(double(r));
      for q=3:-1:1 % o se puede q=1:3 da lo mismo de las dos formas
      c1ajstA(k,q)=r(q); % matriz generada con los ajustes
      end
       k=k+1;
    end
```

```
end
%Para el celular #2
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,2);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c2ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
%Para el celular #3
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,3);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c3ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
%Para el celular #4
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,4);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c4ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
```

```
%Para el celular #5
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,5);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c5ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
%Para el celular #6
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,6);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c6ajstA(k,q)=r(q); % matriz generada con los ajustes
      end
       k=k+1;
    end
end
%Calculo del error cuadratico medio (Root Mean Squared Error)para evaluar
%la calidad del ajuste de toda la matriz
for i=1:m
    for j=1:n
    RMSEAA(i,j)=sqrt((((cel1A(i,j)-c1ajstA(i,j))^2)+((cel2A(i,j)-...
    c2ajstA(i,j))^2)+((cel3A(i,j)-c3ajstA(i,j))^2)+((cel4A(i,j)-...
    c4ajstA(i,j))^2)+((cel5A(i,j)-c5ajstA(i,j))^2)+((cel6A(i,j)-...
    c6ajstA(i,j))^2))/6);
    %Para sacar el NRMSEAA
    rg=[cel1A(i,j);cel2A(i,j);cel3A(i,j);cel4A(i,j);cel5A(i,j);cel6A(i,j)];
    rango=range(rg,1);%me da el rango de la columna, el max-min
    %Normalizado dividido entre el rango de los datos ajustados
    NRMSEAA(i,j)=((RMSEAA(i,j))/rango)*100; %para que lo de en porciento
```

```
%Normalizado dividido entre la media de los datos ajustados
    nRMSEAA(i,j)=((RMSEAA(i,j))/abs(mean(rg)))*100;
    end
end
%Matriz de errores cuadraticos medios de cada elemento de las matrices
RMSEAA:
RMSEAAprom=mean(mean(RMSEAA,2));%Error cuadratico medio de la matriz
NRMSEAA; %Error cuadratico medio normalizado en porciento
NRMSEAAprom=mean(mean(NRMSEAA,2));
nRMSEAA;
nRMSEAAprom=mean(mean(nRMSEAA,2));
per
vectornRMSE(per)=nRMSEAAprom;
end
vectornRMSE;
pos=find(vectornRMSE==min(vectornRMSE));%encuentra indice del min NRMSE
pos1=find(vectornRMSE==max(vectornRMSE));%encuentra indice del max NRMSE
maxnRMSEAAprom=vectornRMSE(pos1)
minnRMSEAAprom=vectornRMSE(pos)
%Ahora repito para el orden para el que fue minimo el nRMSE
orden=P(pos,:)%agarras el orden por renglon que dio el minimo NRMSE
   cel1A=a(:,:,orden(1));
   cel2A=a(:,:,orden(2));
   cel3A=a(:,:,orden(3));
   cel4A=a(:,:,orden(4));
   cel5A=a(:,:,orden(5));
   cel6A=a(:,:,orden(6));
%Ajuste de los seis celulares con el Iluminante A
[m,n] = size(cel1A);
X=[1;2;3;4;5;6];%num asignados a cada celular para el eje x del ajuste
syms nb
syms sp %para que deje a sp smartphone como simbolo
%A continuacion se forma una matriz de 36 renglones y 6 columnas
%con los coeficientes del ajuste
k=1;
for i=1:m
    for j=1:n
        Y=[cel1A(i,j);cel2A(i,j);cel3A(i,j);cel4A(i,j);cel5A(i,j);cel6A(i,j)];
        f=fit(X, Y, 'fourier2');%ajuste series de fourier con dos terminos
        p=coeffvalues(f);%valores de los coeficientes para el ajuste
```

```
f(x)=a0+a1*cos(x*w)+b1*sin(x*w)+a2*cos(2*x*w)+b2*sin(2*x*w)
        % p(1)=a0
                    p(2)=a1
                              p(3)=b1
                                        p(4)=a2 p(5)=b2 p(6)=w
        MCAfourier(k,:)=[p];%genera la lista de 6 coef del ajuste fourier
        k=k+1;
    end
end
%Para acomodar en la forma de la matriz de 3 por 4 con los ajustes
k=1:
for i=1:3
    for j=1:4
        for q=1:3 %acomoda los 6 coef del ajuste en los 3 del ajuste poly2
                             %va agarrando los coeficientes de los renglones
        p=MCAfourier(k,:);
        c(q)=p(1)+p(2)*cos(sp*p(6))+p(3)*sin(sp*p(6))+p(4)*cos(2*sp*p(6))...
        +p(5)*sin(2*sp*p(6));
        k=k+1;
        end
        MFIA(i,j)=c(1)*nb^2+c(2)*nb+c(3);%ajuste poly Matriz del ilum A
        %se guardan en lista que va recorriendo los elem de la matriz
        %de izquierda a derecha y de arriba hacia abajo
    end
end
MFIA=vpa(MFIA,6)%convierte a numero decimal con 6 digitos de precision
%Ahora subtituyo los seis casos de sp, es decir genero las matrices
%recuperadas con los 3 coeficientes del ajuste polinomial
%Para el celular #1
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,1);%al sustituir sp=1 es el caso del cel1
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1 % o se puede q=1:3 da lo mismo de las dos formas
      c1ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
%c1ajstA
%Para el celular #2
```

```
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,2);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c2ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
%c2ajstA
%Para el celular #3
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,3);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c3ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
%c3ajstA
%Para el celular #4
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,4);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c4ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
```

```
end
end
%c4ajstA
%Para el celular #5
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,5);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c5ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
%c5ajstA
%Para el celular #6
k=1;
for i=1:3
    for j=1:4
      sust=subs(MFIA(i,j),sp,6);
      sust=vpa(sust,3);
      r=coeffs(sust);
      r=fliplr(double(r));
      for q=3:-1:1
      c6ajstA(k,q)=r(q);%matriz generada con los ajustes
      end
       k=k+1;
    end
end
%c6ajstA
%Calculo del error cuadratico medio (Root Mean Squared Error) para evaluar
%la calidad del ajuste de toda la matriz
for i=1:m
    for j=1:n
          RMSEAA(i,j)=sqrt((((cel1A(i,j)-c1ajstA(i,j))^2)+((cel2A(i,j)...
          -c2ajstA(i,j))^2)+((cel3A(i,j)-c3ajstA(i,j))^2)+((cel4A(i,j)...
          -c4ajstA(i,j))^2)+((cel5A(i,j)-c5ajstA(i,j))^2)+((cel6A(i,j)...
```

```
-c6ajstA(i,j))^2))/6);
          %Para sacar el RMSE normalizado
          rg=[cel1A(i,j);cel2A(i,j);cel3A(i,j);cel4A(i,j);cel5A(i,j);...
          cel6A(i,j)];
          rango=range(rg,1);%me da el rango de la columna, el max-min
          %Normalizado dividido entre el rango de los datos ajustados
          NRMSEAA(i,j)=((RMSEAA(i,j))/rango)*100;
          %Normalizado dividido entre la media de los datos ajustados
          nRMSEAA(i,j)=((RMSEAA(i,j))/abs(mean(rg)))*100;
   end
end
%Matriz de errores cuadraticos medios de cada elemento de las matrices
RMSEAA;
RMSEAAprom=mean(mean(RMSEAA,2));%Error cuadratico medio de la matriz
NRMSEAA %Error cuadratico medio normalizado en porcientos
NRMSEAAprom=mean(mean(NRMSEAA,2))
nRMSEAA
nRMSEAAprom=mean(mean(nRMSEAA,2))
```

Fin
Apéndice C: Diagramas de cromaticidad y tablas muestra de mediciones Iphone6, iluminante A.

Figura C.1 Diagramas de cromaticidad de las mediciones del Iphone6, iluminante A del Experimento final 2: Geometría de medición 45/0.

			70.	тJ				
b*	a*	L*	v'	u'	Z	Y	Х	Parche
17.5724186	16.2050226	44.269613	0.53235	0.31425	8.432224	43.79002	58.16161	1
18.6613154	27.1748151	71.4694768	0.52809	0.32035	30.2328	133.8596	182.705	2
-25.4142515	-7.72194016	53.5870069	0.50515	0.22997	40.26387	67.4007	69.04076	3
22.6698748	-11.0029394	47.7023961	0.54601	0.23777	8.675101	51.70675	50.66242	4
-26.6035077	6.62150348	59.8419374	0.5019	0.26241	51.05328	87.25859	102.6496	5
-6.03303418	-33.0270572	73.9888545	0.53011	0.19983	54.86295	145.7626	123.6297	6
64.69441	37.9793045	70.4693177	0.54006	0.35572	7.873682	129.3201	191.6527	7
-50.0710707	5.8489755	43.2392462	0.4611	0.24296	46.19609	41.5823	49.2991	8
22.1872466	50.8823163	59.253459	0.52056	0.39679	16.3023	85.24312	146.1945	9
-17.5655236	26.9423724	36.586238	0.49275	0.33978	16.60947	29.08682	45.12854	10
57.3866107	-17.5428858	77.8366327	0.55417	0.23884	14.90752	165.2712	160.2685	11
77.1839772	22.0258762	79.3910266	0.54724	0.31507	8.71142	173.6211	224.9128	12
-52.6732577	3.27024538	29.3242007	0.43085	0.22294	29.32933	18.62389	21.68313	13
28.4825283	-33.47129	58.0520028	0.55327	0.19536	12.78624	81.22512	64.53289	14
35.1973068	55.7072969	51.2209952	0.52272	0.43614	6.885436	60.75678	114.06	15
86.0123121	8.26970009	88.9310398	0.55164	0.28675	11.19796	231.0957	270.2847	16
-8.91053832	53.6232754	59.3836101	0.50054	0.38967	35.09424	85.68617	150.0878	17
-36.9352379	-31.8702944	51.6024869	0.49772	0.1731	47.37467	61.79708	48.35905	18
0	0	100	0.52586	0.25888	104.8058	312.2151	345.8411	19
-0.86677284	-0.81307976	84.9615628	0.52558	0.2573	70.13762	205.8487	226.7432	20
-0.94864135	-1.19387568	70.5091729	0.52559	0.25627	44.30555	129.499	142.0728	21
-0.62675363	-0.62040576	54.4987614	0.52558	0.25717	23.89223	70.08489	77.1586	22
-1.36947678	-0.13347825	39.8267917	0.52458	0.25782	12.18838	34.8023	38.48644	23
-1.14020631	0.31554468	24.3690092	0.52413	0.25944	4.637953	13.15904	14.65573	24

Tabla C.1Valores de la referencia iluminante A para el Experimento final 2: Geometría de medición45/0.

Parche	Х	Y	Z	u'	v'	L*	a*	b*
1	0.733287	0.591499	0.239474	0.2841	0.51563	1.71132353	2.36605113	-1.59491379
2	2.906166	2.487449	1.960023	0.25217	0.48564	7.19668165	1.78974216	-13.1419607
3	1.559935	1.607059	3.076995	0.1788	0.41446	4.64953936	-3.71751351	-27.1667902
4	0.749721	0.975919	0.339388	0.18278	0.53534	2.82352658	-8.39566894	-0.34659089
5	2.364488	2.114899	3.857362	0.20713	0.41686	6.11882086	0.2927002	-28.6849629
6	2.868105	3.901938	4.376972	0.15393	0.47119	10.9194889	-14.8255281	-22.9764371
7	2.33767	1.882198	0.247561	0.29861	0.54097	5.44557087	3.53800277	9.76433424
8	0.968004	0.698319	3.073455	0.18738	0.30415	2.0203749	5.07567629	-35.5196746
9	2.29889	1.358006	0.825334	0.3657	0.48606	3.9289798	12.3941274	-7.14318564
10	0.650096	0.371837	0.815161	0.29982	0.38585	1.07579794	8.70812885	-18.4265312
11	2.977177	4.012503	1.062047	0.17948	0.54426	11.1713872	-14.6442844	3.56766279
12	3.08809	3.110923	0.399172	0.24244	0.54953	8.96144802	-3.86163434	11.8034127
13	0.49819	0.291504	2.069973	0.17984	0.23676	0.84337869	7.59990852	-34.5141065
14	1.188012	1.998165	0.838536	0.14111	0.53401	5.78108632	-17.3887477	-2.86878624
15	2.123943	1.125741	0.409434	0.41978	0.50061	3.25699124	14.8930691	-0.8305298
16	3.669514	4.146213	0.633464	0.2166	0.55068	11.4699092	-8.53439456	10.9305397
17	2.572748	1.41554	2.280724	0.33578	0.41568	4.09543703	14.8513675	-22.7355925
18	1.469711	1.731955	3.899009	0.15017	0.39819	5.01088817	-7.5228589	-31.3612063
19	4.802408	5.175177	5.249071	0.19566	0.47441	13.576612	-7.30577806	-22.7276032
20	4.084212	4.326648	4.403266	0.19876	0.47375	11.8627434	-6.23557222	-21.4888075
21	3.081339	3.254657	3.354442	0.1989	0.47272	9.34010617	-5.56942672	-19.8103461
22	1.515893	1.593935	1.582194	0.20097	0.47546	4.61156903	-4.26677449	-14.9919052
23	0.401374	0.426235	0.423054	0.19909	0.4757	1.23318211	-2.92251606	-9.65761068
24	0.047165	0.048963	0.042997	0.20718	0.48393	0.14165964	-1.22680877	-4.07562405

Tabla C.2Valores Iphone6 mínimo brillo iluminante A para el Experimento final 2: Geometría de
medición 45/0.

Parche	Х	Y	Z	u'	v'	L*	a*	b*
1	20.9194	16.7269	7.409236	0.28456	0.51195	27.7299024	7.78218462	-7.30117717
2	82.24734	70.2273	57.24528	0.25163	0.48343	54.5464794	5.69919285	-41.8544714
3	45.56976	46.32445	89.83829	0.18048	0.41281	45.4106148	-10.2699111	-84.1058264
4	21.88757	28.11522	10.22177	0.18459	0.53351	35.9940743	-24.8568885	-2.41630654
5	67.97354	60.25595	112.6983	0.20756	0.414	51.0357801	1.76119594	-89.3204649
6	84.37641	112.7305	128.0509	0.15628	0.46982	66.6013539	-43.611214	-71.3944083
7	65.67416	52.72376	7.577434	0.29876	0.53967	48.1173375	11.025029	27.2284734
8	28.32573	20.06112	89.8836	0.18918	0.30147	30.4613417	16.8747663	-109.91237
9	64.24198	37.24488	24.57946	0.36886	0.48116	41.1034325	39.1529123	-24.8825093
10	18.37061	10.40905	24.12083	0.29765	0.37947	21.334504	27.0297409	-58.1949311
11	86.25152	115.6248	31.12648	0.18025	0.54368	67.3023052	-44.3351047	10.1870627
12	87.55471	88.92249	11.88529	0.24036	0.54926	60.3209721	-12.6659813	34.7813163
13	14.63636	8.46292	60.55294	0.18112	0.23563	18.8455053	24.0469197	-106.497877
14	35.52647	58.34893	24.78651	0.14425	0.53307	50.3209879	-51.6978193	-9.33552158
15	58.79933	30.36379	12.32204	0.42668	0.49576	37.3447906	47.0584313	-6.0043415
16	104.7515	118.2541	18.83376	0.21653	0.55	67.9290081	-25.9754441	31.8433184
17	71.73484	38.60737	66.9039	0.33695	0.40803	41.7914282	46.8736655	-72.5670958
18	43.57283	50.20806	114.0724	0.15303	0.39675	47.0808933	-21.241543	-96.9686343
19	139.9014	149.4747	154.2775	0.1967	0.47287	74.7463679	-21.3609809	-71.0517562
20	117.7614	124.0951	129.0091	0.19907	0.472	69.288714	-18.4737054	-67.2930162
21	89.04785	93.5117	98.97361	0.19914	0.47052	61.6119638	-16.4426666	-62.4054059
22	43.65053	45.5764	46.16171	0.20166	0.47377	45.0782653	-12.4606207	-46.8625802
23	11.6411	12.14197	12.71521	0.20078	0.47119	23.3009522	-7.96140185	-31.2490555
24	1.422717	1.436948	1.621012	0.20441	0.46453	4.15737461	-3.05417148	-16.5627727

Tabla C.3 Valores Iphone6 medio brillo iluminante A para el Experimento final 2: Geometría de medición 45/0.

Parche	Х	Y	Z	u'	v'	L*	a*	b*
1	76.83608	61.1887	27.09959	0.28564	0.51181	51.3799106	12.3997972	-11.2432992
2	302.8218	258.2072	206.2134	0.25263	0.48468	92.8836834	9.01761435	-62.8845823
3	165.7243	170.4498	323.1631	0.17955	0.41551	78.8066614	-17.3824204	-127.640198
4	79.66904	102.8107	37.45232	0.18376	0.53356	64.10374	-38.7673176	-3.81583184
5	247.7684	220.1058	405.4327	0.20796	0.41567	87.2405993	2.39445882	-135.959083
6	307.3539	414.6502	459.6815	0.1555	0.47201	111.506986	-68.8807155	-107.541691
7	244.1259	195.2531	28.33929	0.29973	0.53938	83.1987045	17.6131578	41.7026659
8	103.2901	74.1379	326.4093	0.18826	0.30403	55.8323566	24.5964398	-168.222531
9	237.3937	137.7197	88.27848	0.36976	0.48265	72.3023058	60.4498559	-36.6348764
10	67.09429	37.88497	86.36022	0.30004	0.3812	41.4287025	41.9121137	-88.4870959
11	317.5635	425.3167	114.6055	0.1804	0.54364	112.591077	-68.288601	15.6599752
12	321.9556	326.292	44.61863	0.2407	0.54888	101.717807	-19.1908262	52.506618
13	53.57517	31.32505	220.8932	0.18067	0.23768	37.9018841	36.1981122	-163.491883
14	131.5175	216.7143	92.09657	0.14379	0.53311	86.7075914	-80.457423	-14.4828921
15	218.4066	113.1303	44.33517	0.42649	0.49706	66.6988876	72.5153374	-7.55154108
16	388.7424	438.0894	71.2333	0.21675	0.54961	113.865643	-39.8912924	48.0615964
17	263.7328	142.2091	239.8519	0.3385	0.41068	73.2515603	72.1017545	-109.679888
18	158.8729	184.4044	411.7082	0.15276	0.39894	81.3263526	-33.7111583	-147.767653
19	522.0261	559.6682	569.9007	0.19649	0.47399	124.912731	-33.8272779	-108.74344
20	437.706	463.2806	473.8207	0.19876	0.47335	116.308596	-29.4517284	-102.585822
21	329.1155	347.0073	360.0481	0.19903	0.47216	104.158056	-26.1165487	-94.6095097
22	160.7899	168.5074	167.0221	0.20165	0.47549	78.4451543	-19.7466845	-70.7743018
23	42.86544	44.76962	46.3445	0.2009	0.47211	44.7157211	-12.4106962	-47.6882447
24	5.185003	5.253594	5.760193	0.2048	0.46689	13.7252505	-4.83618748	-24.7904657

Tabla C.4Valores Iphone6 máximo brillo iluminante A para el Experimento final 2: Geometría de
medición 45/0.

Apéndice D: Posters presentados en el "College on Optics and Energy" y en la "Latin American Optics and Photonics Conference".

This research is supported by CONACYT grant 128452 E-mail: ingejorge2011@gmail.com, imoreno@fisica.uaz.edu.mx

Referencias

- [1] Malacara, Daniel. *Color vision and colorimetry: theory and applications*. No. 105., U.S.A., SPIE press, 2002.
- [2] Shevell, Steven K. *The Science of Color.* U.K., Elsevier, 2003.
- [3] Xuemei Zhang, Brian A. Wandel, "A spatial extension of CIELAB for digital color image reproduction", Soc. for Info. Disp. Symp. Tech. Digest 27, 731-734 (1996).
- [4] Garret M. Johnson, Mark D. Fairchild, " A top down description of S-CIELAB and CIEDE2000", Color Res. Appl. 28, 425-435 (2003).
- [5] Jang Jin Yoo, Guihua Cui, M. Ronnier Luo, "Colour naturalness metric for evaluating image quality of mobile displays", Proc. SPIE 7241, Color Imaging XIV: Displaying, Processing, Hardcopy, and Applications, 72410I (January 19, 2009).
- [6] Rui Gong, Haisong Xu, Binyu Wang, Ming Ronnier Luo, "Image quality evaluation for smart-phone displays at lighting levels of indoor and outdoor conditions", Optical Engineering 51, 084001-1 (2012).
- [7] Rui Gong, Haisong Xu, "Impacts of appearance parameters on perceived image quality for mobile-phone displays", Optik Int.J. Light Electron Opt. 125, 2554-2559 (2014).
- [8] Felix Kimme, Peter Brick, Sangam Chatterjee, and Tran Quoc Khanh, "Optimized flash light-emitting diode spectra for mobile phone cameras", Appl. Opt. 52, 8779-8788 (2013).
- [9] Yetisen, A. K., Martinez-Hurtado, J. L., Garcia-Melendrez, A., da Cruz Vasconcellos, F., Lowe, C. R. "A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests". Sensors and Actuators B: Chemical, 196, 156-160 (2014).
- [10] Shen, L., Hagen, J. A., Papautsky, I. "Point-of-care colorimetric detection with a smartphone". Lab on a Chip, 12(21), 4240-4243 (2012).
- [11] García, A., Erenas, M. M., Marinetto, E. D., Abad, C. A., de Orbe-Paya, I., Palma, A. J., Capitán-Vallvey, L. F. "Mobile phone platform as portable chemical analyzer". Sensors and Actuators B: Chemical, 156(1), 350-359 (2011).

- [12] Zafar Iqbal, Robert B. Bjorklund, "Colorimetric analysis of water and samples performed on a mobile phone", Talanta 84, 1118-1123 (2011).
- [13] Gómez-Robledo, L., López-Ruiz, N., Melgosa, M., Palma, A. J., Capitán-Vallvey, L. F., Sánchez-Marañón, M. "Using the mobile phone as Munsell soil-colour sensor: An experiment under controlled illumination conditions". Computers and electronics in agriculture, 99, 200-208 (2013).
- [14] Wei, Q., Nagi, R., Sadeghi, K., Feng, S., Yan, E., Ki, S. J., Ozcan, A. "Detection and spatial mapping of mercury contamination in water samples using a smart-phone". ACS nano, 8(2), 1121-1129 (2014).
- [15] Dasheng Leea, Wen Pin Choub, Shiou Hwei Yehc, Pei Jer Chend, Ping Hei Chenb, " DNA detection using commercial mobile phones", Biosensors and Bioelectronics 26, 4349-4354 (2011).
- [16] Sari, Y. A., Ginardi, R. H., Sarno, R. "Assessment of Color Levels in Leaf Color Chart Using Smartphone Camera with Relative Calibration". Information Systems, 2, 4. (2013).
- [17] Leon, K., Mery, D., Pedreschi, F., Leon, J. "Color measurement in $L^*a^*b^*$ units from RGB digital images". Food research international, 39(10), 1084-1091 (2006).
- [18] Wyszecki, G., Stiles, W. S. Color science. Vol. 8., New York, Wiley, 1982.
- [19] Hunt, R. W. G., Pointer, M. R. *Measuring colour*. John Wiley & Sons, 4th Edition, U.K., 2011.
- [20] Bass, M., Van Stryland, E. W., Williams, D. R., Wolfe, W. L. Handbook of Optics. Fundamentals, Techniques and Design. Vol. 1, McGraw-Hill, New York, 1995.
- [21] Ljung, Lennart. System Identification: Theory for the user. Prentice Hall PTR, Second Edition, New Jersey, 1999.
- [22] Walpole, Ronald E., Myers, Raymond H. *Probabilidad y Estadística para Ingenieros*. Tercera Edición, Interamericana, México, 1986.
- [23] Oleari, C., Fermi, F., Ucakar, A. "Digital image-color conversion between different illuminants by color-constancy actuation in a color-vision model based on the OSA-UCS system". Color Research & Application, 38(6), 412-422 (2013).
- [24] Choi, K., Jang, J., Suk, H. J. "Recalling white point of smartphone under varying illuminants". In IS&T/SPIE Electronic Imaging (pp. 90150K-90150K). International Society for Optics and Photonics (January, 2014).
- [25] Park, Y., Li, C., Luo, M. R., Kwak, Y., Park, D. S., Kim, C. "Applying CIECAM02 for mobile display viewing conditions". In Color and Imaging Conference (Vol. 2007, No. 1, pp. 169-173). Society for Imaging Science and Technology (January, 2007).

- [26] Choi, K., Suk, H. J. "User-preferred color temperature adjustment for smartphone display under varying illuminants". Optical Engineering, 53(6), 061708-061708 (2014).
- [27] Usui, S., Arai, Y., Nakauchi, S. "Neural networks for device-independent digital color imaging". Information Sciences, 123(1), 115-125 (2000).
- [28] Dain, S. J., Kwan, B., Wong, L. "Consistency of color representation in smart phones". JOSA A, 33(3), A300-A305 (2016).
- [29] Oh, J. H., Yoo, H., Park, H. K., Do, Y. R. "Analysis of circadian properties and healthy levels of blue light from smartphones at night". Scientific reports, 5 (2015).