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We introduce a new approach for image filtering in a Bayesian framework. In this case the probability density function (pdf) of the
likelihood function is approximated using the concept of non-parametric or kernel estimation. The method is based on the generalized
Gaussian Markov random fields (GGMRF), a class of Markov random fields which are used as prior information into the Bayesian rule, which
principal objective is to eliminate those effects caused by the excessive smoothness on the reconstruction process of images which are
rich in contours or edges. Accordingly to the hypothesis made for the present work, it is assumed a limited knowledge of the noise pdf,
so the idea is to use a non-parametric estimator to estimate such a pdf and then apply the entropy to construct the cost function for the
likelihood term. The previous idea leads to the construction of Maximum a posteriori (MAP) robust estimators, since the real systems are
always exposed to continuous perturbations of unknown nature. Some promising results of three new MAP entropy estimators (MAPEE) for
image filtering are presented, together with some concluding remarks.
[DOI: http://dx.doi.org/10.2971/jeos.2013.13047]
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1 INTRODUCTION

The image restoration approaches or recuperation of an image
to its original condition given a degraded image, passes by
reverting the effects caused by a distortion functional which
in some cases is known or must be estimated. The basic idea
in Bayesian estimation is to construct a Maximum a posteri-
ori (MAP) of the modes or so called estimator of true images
by using Markov Random Fields (MRF’s). The evolution of
the basic idea has caused the development of new algorithms
which consider new models of contextual information which
is led by the MRF’s and the final aim is the restoration of real
images. The idea is based on a robust scheme which could
be adapted to reject outliers, tackling situations where noise
is present in different forms during the acquisition process. In
the case of classical MAP filters, usually the additive Gaussian
noise is considered, however in some applications this noise is
non-Gaussian [1] or unknown (with some partial knowledge).
This is a source of information which imposes a key rule in

the image processing context (the contextual or spatial infor-
mation), that represents the likelihood function or correlation
between the intensity values of a well specified neighborhood
of pixels. Also, the modelling when using MRF’s takes into ac-
count such spatial interaction and it was introduced and for-
malized in [2] where it is shown the powerfulness of these sta-
tistical tools [3]–[7]. The image modeling in the context of the
present paper lead us to assume a limited knowledge about
the image noise pdf (see Eq. (3), where p(e) = p(y|x)), so we
propose to use the data itself to obtain a non-parametric En-
tropy Estimate (EE) of the log-likelihood pdf (p̂n,h(e)) [8]–[10],
similar methodologies have been proposed in recent works by
Milanfar et al, [11, 12]. Then the log-likelihood will be opti-
mized together with a log-MRF to obtain the MAP image esti-
mation.

A variety of applications in signal processing and instrumen-
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tation are based in statistical modelling analysis. One of the
most used is the linear regression model (simple or multi-
variable in the case of images)

yi,j = x>i,jθi,j + ei,j, with e ∼ p(e), (1)

where y represents the response (observed data, acquired
data, or explained variables), to x explicative variables for
i = 1, . . . , N and j = 1, . . . , M, and a system response parame-
terized by θ which is associated to data (y, x). In some applica-
tions θ are functional parameters which will be estimated by
an identification procedure if x are known, but if θ are known
and x are unknown, the estimation is made about x, or the esti-
mation can be made for both cases (e.g. blind deconvolution).
The e variables are independent random processes identically
distributed accordingly to p(e). A natural extension of the lin-
ear regression model, is the non-linear regression model, but
now it is based on a parameterized function f (·) (see Eq. (2)).
This function is nonlinear with respect to the parameters, and
its use is also considered because it has been shown in a large
variety of signal processing and control applications that the
modelling when using nonlinear functions could be more real-
istic. The perturbations affecting the analyzed system are also
modelled as stochastic processes. Then, for this case:

yi,j = f (x, θ)i,j + ei,j, with e ∼ p(e). (2)

The proposed nonparametric procedure is led by the classical
kernel estimators, it will be presented in Section 3. The princi-
pal contribution of this work is explained in Sections 4 and 5,
where a comparison of the different proposed MAP-Entropy
estimators (MAPEE) is presented. This comparison shows the
performance and the improvement of estimation results when
one takes into account the influence of the bandwidth parame-
ter h used by the classical kernel estimators, and when it is dis-
carded by using two other nonparametric procedures. Thus,
a more general criterion is proposed and it is constructed on
the basis of three nonparametric estimators of the residuals
distribution, and some new efficient estimators could be built
(efficiency in the sense of calculus time) [13, 14] and [15]. Fi-
nally, some concluding remarks about the MAPEE proposed
estimators are given in Section 6.

2 BAYESIAN FILTERING AND
LOG-LIKELIHOOD APPROXIMATED BY
EE

The problem of image estimation (e.g. restoration) into a
Bayesian framework deals with the solution of an inverse
problem, where the estimation process is carried out in a
whole stochastic environment. All variables presented along
this paper are, x: which represent a Markov random field (or
image to be estimated), y: represents the observed image with
noise and distorted, and x̂: is the estimator of x with respect
to data y, and p(·) is a probability density function.

Maximum A Posteriori (MAP) estimator:

x̂MAP = arg max
x∈X

p(x|y)
= arg max

x∈X
(log p(y|x) + log g(x))

= arg min
x∈X

(− log p(y|x)− log g(x)) ,

(3)

in this case, the estimator is regularized by using a Markov
random field function g(x) which model all prior information
as a whole probability distribution, where X is the set of pixels
x capable to maximize or minimize p(x|y), and p(y|x) is the
likelihood function from y given x.

2.1 Markov random fields

The Markov random fields (MRF) can be represented in a gen-
eral way by using the following cost function:

g(x) =
1
Z

exp

(
− ∑

c∈C
Vc(x)

)
, (4)

where Z is a normalization constant, C is a set of “cliques”
c or local neighborhoods of pixels, and Vc(x) is a weighting
function given over the local group of points c. Generally, the
“cliques” correspond to the sets of neighborhoods of pixels
if ∀s, r ∈ c, s and r are neighbors, and one can construct a
neighborhood system called ∂s; for the 8 closest neighbors
∂s = {r : |s − r| < 2}. The Markov random fields have the
capacity to represent various image sources.

There is a variety of MRF models which depend on the cost
functions also known as potential functions that can be used.
Each potential function characterizes the interactions between
pixels in the same local group [4, 6].

2.2 Likel ihood pdf Entropy estimators (EE)

A classical procedure to estimate x when θ is known (from
Eq. (1) and (2)), is based on a cost function or criterion J (x)
which varies in function ψ(·) of residuals or noise e(x), where:

ei,j(x) = yi,j − x>i,jθi,j or ei,j(x) = yi,j − f (x, θ)i,j, (5)

and so

J (x) =
N

∑
i=1

M

∑
j=1

ψ(ei,j(x)). (6)

This is, for example, the case of the maximum likelihood (ML)
estimator:

x̂ML = arg min
x∈X

[
−

N

∑
i=1

M

∑
j=1

log p(ei,j(x))

]
. (7)

The ML estimator is optimal when all information about the
distribution p(e) is accessible. When the knowledge about
p(e) is imprecise or wrong, the estimator x̂ML is possibly sub-
optimal. Moreover, under certain circumstances, in image pro-
cessing restoration, it results in an ill-posed problem or pro-
duces excessive noise and also causes smooth of edges. The
regularization of the ML estimator gives a more effective ap-
proach called Maximum A Posteriori (MAP) estimator which
reduces noise and smoothness at the same time.

Our proposition for a new MAP scheme is to use a General-
ized Gaussian MRF introduced by Bouman and Sauer in [4, 7],
together with three kernel estimators used in [8, 9], and [10]
to obtain cost functionals or criterions based on the entropy
of the approximated likelihood function (first term of Eq. (3))
p̂n,h(e). Thus, − log p(y|x) is built on the basis of the entropy
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of an estimate (EE) version p̂n,h(e) of the distribution p(e). A
first proposition is due to Pronzato and Thierry [16, 17], the
approximation is obtained using the classical kernel estima-
tors which uses the empirical distribution of the random vec-
tor e1(x), . . . , en(x), the next expression denote such estima-
tors:

p̂n,h(e) = p̂n,h(e|e1(x), . . . , en(x)) =
1
n

n

∑
i=1

Kh (e− ei) . (8)

This expression assumes the hypothesis that p(e) is symmet-
ric, two times differentiable and positive, indeed, it is assumed
that K(·) is a kernel weighted function which satisfies some
imposed conditions treated in the work of Masry [18] and sub-
sequently taken back by Devroye [19]–[22], Berlinet [23], and
Loader [24] in some of their research work. The bandwidth
h = hn is given in function of the sample size n, this param-
eter could be considered as a sequence of positive numbers
that must satisfy: hn → 0 and nhn → ∞ when n → ∞. The
strong uniform consistency of p̂n,h(e) and its convergence to-
ward p(e), depend on a convenable procedure of bandwidth
selection. A simple and faster procedure which has been re-
tained in this work is the technique proposed and developed
by Terrell [14, 15]. In the two dimensional kernel cases the pre-
vious idea has been extended in this work according to the
equation:

p̂n,h(e) = p̂n,h(e|e1,1(x), . . . , en,n(x))

=
1
n2

n

∑
k=1

n

∑
l=1

Kh (e− ek,l) . (9)

for a sample size of n × n. If the convergence and con-
sistence of p̂n,h(e) is assumed, such that p̂n,h(e) → p(e),
then the entropy criterion over p̂n,h(e) can be approxi-
mated to − log p(y|x). The fact that the entropy of any
probability density function is invariant by translation,
leads to consider one practical artifact to build a suitable
criterion. An extended criterion p̂n,h(eE) is based on the
residuals or noise extended vector which is given by:
eE = {e1(x), . . . , en(x),−e1(x), . . . ,−en(x)} and on a suitable
choice of h:

Je(x) = HA ( p̂n,h(eE)) ≈ − log p(y|x), (10)

where HA( f ) = −
∫ An

−An
f (x) log f (x)dx. This last idea is also

applied for the two dimensional case. Finally, if we assume
that the EE is a version of the log-likelihood function into
the MAP estimator, then a first version of the MAP-Entropy
Estimator (MAPEE) which assumes unknown noise pdf can
be constructed from the fact that − log p(y|x) can be approx-
imated by the entropy of an estimate version p̂n,h(e) of the
distribution p(e), that is HA ( p̂n,h(eE)), thus:

x̂MAPEE = arg min
x∈X

(HA ( p̂n,h(eE))− log g(x)) . (11)

3 KERNEL STRUCTURES

A function of the form K(z) is assumed as a fixed kernel
Kh(z) = 1/(hd)K(z/h), where h > 0, this parameter is called
the kernel bandwidth. The fundamental problem in kernel
density estimation lies in both the selection of an appropriate

value for h and the selection of the kernel structure. The choice
of K(z) could depend on the smoothness of p(e). Three differ-
ent kernels or nonparametric schemes are reviewed in this sec-
tion to approximate p̂n,h(eE). The gaussian kernel, which has
proved to give good performance when h is selected by us-
ing the over-smoothed principle introduced by Terrell [14, 15]
when the errors vector is generally of finite length n. The sec-
ond kernel is the cosine based weights functions, where h is
viewed in a different way. Finally, the third kernel is obtained
from a recent class of Hilbert kernels [21]. It avoids the band-
width h selection and its performance depends on other pa-
rameters, which selection is very easy (parameters d and k are
defined in Section 3.3).

3.1 Normal or gaussian kernel

Among the different classical kernels [23], the gaussian kernel
has been chosen since it is one of the most popular and easy
to implement estimator. The next expression resumes this es-
timator by a sum of exponentials:

p̂n,h(z) =
1

n2h
√

2π

n

∑
k=1

n

∑
l=1

exp

(
−
(z− zk,l)

2

2h2

)
. (12)

In such a case, and considering that a fixed kernel struc-
ture has been chosen, Terrell [14] proposes to use an over-
smoothed bandwidth hn that corresponds to:

h = 3
(

1
2
√

π(35)

) 1
5

σn−
1
5 , (13)

this bandwidth value guarantees the minimization of the
Mean Integrated Squared Error (MISE), σ is the standard de-
viation of the sample z, and

∫
K(z)2dz = 1

(2
√

π)
. Under mild

conditions, the kernel density estimates based on the over-
smoothing principle are consistent and for sufficiently large
sample sizes, they will display all information present in the
underlying errors p(e) density.

3.2 Cosine based weights functions

A sequence of special weight cosine functions
cq(z) = 1/(Aq) cos2q(z/2) requires only O(q2n) arith-
metic operations, where q is a slowly growing function that
increases without bound together with n (i.e. q(n) < n or
q(n) > n). This estimator is similar to the kernel classical
estimators and evaluates a series expansion in a more efficient
way. The role of h is replaced by q (cq(z) ≡ Kh(z)) and the
efficiency is attained (according to the time of calculus), since
the selection of q is generally simpler than h. Thus (9) is
equivalent to

p̂n,q(z) =
1

n2 Aq

n

∑
k=1

n

∑
l=1

(
1 + cos(z− zk,l)

2

)q

, (14)

where the value of Aq could be approximated by

Aq ≈
2
√

π
√

q
. (15)

Sufficient consistency and convergence conditions are given
in [13] for the one dimensional case.
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3.3 The Hilbert kernel

Finally, the Hilbert kernel estimate is used. The function
Kh(z) = 1/(hd)K(z/h) is considered equivalent to K(u) =

1/‖u‖d, where the smoothing factor h is canceled obtaining:

p̂n(z) =
1
n2

n

∑
k=1

n

∑
l=1

1
‖z− zk,l‖d . (16)

The Hilbert estimates are viewed as a universally consistent
density estimate whose expected performance (L1, L∞, point-
wise) is monotone in n (at least in theory) for all densities. The
consistency of this class of estimators is proved in [21] (see the-
orem 2). The Hilbert density estimate of order k (k > 0) is a re-
defined subclass that avoids the infinite peaks produced dur-
ing estimation, in one dimensional case and using the value of
k = 2 the kernel estimate is given by:

p̂n(z) =
√

4
V2

d πn(n− 1) log n ∑
1≤i<j≤n

1
Deni,j

, (17)

where Deni,j = ‖z − zi‖2d + ‖z − zj‖2d and Vd is the vol-
ume of the unit ball in Rb. This last expression is also called
Cauchy density estimate, due to its similarity to the multivari-
ate Cauchy density, ‖ · ‖ denotes the L2 metric on Rd. Finally,
it is assumed that p̂n(z) → p(z) at least in probability for
almost all z. For a suitable choice of An and alternatively of
hn, q, or d and k, these estimators could be “blind asymptoti-
cally efficient”. The asymptotic properties and the strong con-
sistency of the truncated entropy estimators were analyzed
in [16]. More over, in recent works the powerfulness of these
nonparametric tools have been largely used for different sig-
nal processing problems [11, 12, 25].

4 GENERALIZED GAUSSIAN MRF
(GGMRF)

The MAPEE approach proposed here takes into account the
proved robustness in presence of outliers of the minimum
entropy estimators proposed in [8]–[10]. Obtaining now the
complete cost functional structure for the x̂MAPEE estimator
from the point of view of the MRF, the log g(x) used is based
on a generalized Gaussian MRF introduced in [4, 7].

If one considers to generalize the Gaussian MRF (when
p = q = 2 one has a Gaussian MRF), as proposed by Bouman
[4], where the generalized potential functions can be limited
such as

ρ(∆) = |∆|p , for 1 ≤ p ≤ 2 (18)

obtaining the GGMRF

log g(x) = −λp

∑
s∈S

asxp
s + ∑

{s,r}∈C
bsr|xs − xr|p

+ ct, (19)

where theoretically as > 0 and bsr > 0, s is the site or pixel of
interest and S is the set of sites into the whole MRF, and r cor-
responds to the local neighbors. In practice it is recommended
to take as = 1, since the likelihood term is not given in terms
of quadratic q = 2 functional. In order to relax the convexity

problem, the following equation has been used

log g(x) = −λp

∑
s∈S

asx2
s + ∑

{s,r}∈C
bsr|xs − xr|p

+ ct, (20)

and from Eq. (2), log p(y|x) is strictly convex and so x̂MAPEE
is continuous in y, and in p. The choice of the power p is
capital, since it constrains the convergence speed of the lo-
cal or global estimator, and the quality of the restored im-
age, small values for p allows abrupt discontinuities modeling
while large values smooth them.

Now, substituting this particular log g(x) into the Eq. (11) one
could obtain at least three MAPEE estimators given by

x̂MAPEEm = arg min
x∈X

{
HA ( p̂n,h(eE))

−λp

∑
s∈S

asx2
s + ∑

{s,r}∈C
bsr|xs − xr|p

 , (21)

for m = 1, 2, 3 according to the three previous kernels: Nor-
mal, cosine and Hilbert.

5 RESULTS FOR NOISE FILTERING

Continuing with the problem of filtering noise, some estima-
tion results were obtained when images are contaminated by
Gamma, Beta, Uniform and impulsive noise, and there are no
other type of distortions (all θi,j = 1). The observation equa-
tion then could be

y = x + e, where e ∼ G(α, β), e ∼ B(α, β), . . .

The first experiment was made considering Gamma noise
where α = 0.5, 1.5, 2.5 and β = 1, 2, 3, and also two factors
of amplification of noise were used σa = 5, 10 (σaG(α, β)).
The values of α and β are given such that the obtained degra-
dation is perceptible and difficult to eliminate. Some results
presented in this section were concerned experimenting ex-
tensively with four images: synthetic, Lena, Cameraman, and
Boat (see Figure 1), to probe the performance of the presented

FIG. 1 The figure shows: (a) synthetical probe image; (b) the classical Cameraman

image; (c) the classical Lena image; (d) the classical Boat image.
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α = 1.5, β = 2 MAPEE1 MAPEE2 MAPEE3

Im. synthetic PSNR noise 22.2 22.4 22.6
35× 35 PSNR filtered 24.1 24.1 24.4

Time (sec) 10.6 12.1 9.3
Im. Lena PSNR noise 16.3 16.2 16.3
120× 120 PSNR filtered 17.9 17.9 18

Time (sec) 123.6 141.6 109.8
Im. Cameraman PSNR noise 16.4 16.4 16.4

256× 256 PSNR filtered 18.5 18.5 18.5
Time (sec) 563.2 644.8 499.9

Im. Boat PSNR noise 16.3 16.4 16.4
512× 512 PSNR filtered 18.7 18.7 18.8

Time (sec) 2,340.1 2,569.8 2,063.5

TABLE 1 Results obtained in evaluating the filtering capacity of the different MAPEE estimators for Gamma G(α, β) noise, with σa = 10.

α = 2.5, β = 1 MAPEE1 MAPEE2 MAPEE3

Im. synthetic PSNR noise 24.6 24.6 24.7
35× 35 PSNR filtered 25.6 25.5 25.6

Time (sec) 9.8 11.6 8.8
Im. Lena PSNR noise 24.5 24.7 24.6
120× 120 PSNR filtered 24.9 24.8 25.0

Time (sec) 115.3 135.9 102.4
Im. Cameraman PSNR noise 24.6 24.6 24.6

256× 256 PSNR filtered 25.3 25.1 24.9
Time (sec) 524.8 618.6 467.6

Im. Boat PSNR noise 24.6 24.6 24.6
512× 512 PSNR filtered 25.1 25.2 25.0

Time (sec) 2,099.2 2,465.3 1,829.6

TABLE 2 Results obtained in evaluating the filtering capacity of the different MAPEE estimators for Beta B(α, β) noise, with σa = 20.

FIG. 2 Results for synthetical probe image: (a) describes the noisy image, for Gamma

noise with α = 1.5 and β = 2, and σa = 5; (b) filtered image using MAPEE1 (Normal

kernel); (c) filtered image using MAPEE2 (cosine kernel); and, (d) filtered image using

MAPEE3 (Hilbert kernel).

MAPEE estimators. Figure 2 shows the filtering of the synthet-
ical image using the three MAPEE estimators for parameters
λ = 10, p = 1.2 of the GGMRF. Generally, with the three esti-
mators the filtering task gives good visual results (see also Fig-
ure 3), but the time of computation is different between them,

FIG. 3 Results for Boat image: (a) describes the noisy image, for Gamma noise; (b)

filtered image using MAPEE1 (Normal kernel); (c) filtered image using MAPEE2 (cosine

kernel); and (d) filtered image using MAPEE3 (Hilbert kernel).

the fastest estimator was MAPEE3 (Subfigure 2(d), see also Ta-
ble 1). On the other hand, some objective measurements were
obtained, such as the PSNR depicted in Table 1 which agree
to the visual results. Also times of computation are shown in
Table 1.
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FIG. 4 Results for synthetical probe image: (a) describes the noisy image, for impul-

sive noise: imnoise(X,’salt & pepper’,0.18); (b) filtered image using MAPEE1 (Normal

kernel); (c) filtered image using MAPEE2 (cosine kernel); and (d) filtered image using

MAPEE3 (Hilbert kernel).

FIG. 5 Results for Lena image: (a) describes the noisy image, for impulsive noise; (b)

filtered image using MAPEE1 (Normal kernel); (c) filtered image using MAPEE2 (cosine

kernel); and (d) filtered image using MAPEE3 (Hilbert kernel).

Some other experiments were conducted for Beta and impul-
sive noise. For the case of Beta noise generation we choose
α = 1.5, 2.5, 5, 7.5 and β = 1, and also two factors of amplifi-
cation of noise were used σa = 10, 20 (σaB(α, β)). The filtering
results are promising for non-Gaussian noise, the obtained re-
sults for the Beta noise filtering also confirm the robustness
of the proposed approach, where the PSNR depicted in Ta-
ble 2 shows the obtained improvement. Moreover, as one can
see for impulsive noise in Figures 4, 5 and 6 the robustness is
assured when using the three MAPEE estimators, where for
instance, in the synthetic image case the PSNR was improved
from 11.45 dB to 17.1 dB. The iterated method used in this
work to minimize the obtained criterions for the MAPEE was
the Levenberg–Marquardt method of MATLAB 2008 running
in a computer with CORE i7 processor, and 4 Gbytes of RAM
memory.

FIG. 6 Results for Cameraman image: (a) describes the noisy image, for impulsive

noise; (b) filtered image using MAPEE1 (Normal kernel); (c) filtered image using

MAPEE2 (cosine kernel); and (d) filtered image using MAPEE3 (Hilbert kernel).

6 CONCLUSIONS

The selection among the three different kernel options, per-
mits the performance improvement of the MAPEE estima-
tors which could be classified in terms of simplicity and in
terms of filtering quality. The obtained results for the three
proposed estimators are favorable in general in the sense of
robustness, and the fastest convergence is obtained for the
MAPEE1 and MAPEE3 estimators (in the case of the MAPEE2
estimator q = 40, and for MAPEE3, k = 2, d = 1, and
Vd = 0.7071. The value of q was changed alternatively in the
range of 30 ≤ q ≤ 90, and some performance improvement
has been noticed). Moreover, the times of computation de-
pends also on the type of noise to be filtered. A general scheme
for MAPEE estimators has been introduced and it works in
real frameworks, where the nonlinearity conditions of some
systems could be present. For future works it exists the inter-
est to implement procedures of MAPEE estimation into high
level programming that will be characterized into algorithms
to be used in DSP cards, and tasks such as image reconstruc-
tion and segmentation, also one can change the MRF and the
optimization procedures to decrease the times of computa-
tion. The final aim is to use MAPEE to process real signals
issued from real instrumentation or signal processing prob-
lems.
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