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Abstract: In this work, a novel model of Markov Random Field (MRF)
is introduced. Such a model is based on a proposed Semi-Huber potential
function and it is applied successfully to image segmentation in presence
of noise. The main difference with respect to other half-quadratic models
that have been taken as a reference is, that the number of parameters to be
tuned in the proposed model is smaller and simpler. The idea is then, to
choose adequate parameter values heuristically for a good segmentation of
the image. In that sense, some experimental results show that the proposed
model allows an easier parameter adjustment with reasonable computation
times.
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1. Introduction

Segmentation can be considered the first step and essential part in object recognition, scene and
image understanding. Some of its applications comprise industrial quality control, medicine,
robot navigation, geophysical exploration, military applications, agriculture, among others. Im-
age segmentation is an image processing method that subdivides an image into its constitutive
regions or objects. The level until which this process is carried out depends on the problem to be
solved. This means, segmentation stops once the objects of interest in an application have been
isolated. For example, in automated inspection in electronic assemblies is of particular interest
to analyze images with the purpose of determining the presence or absence of anomalies such
as missing components or broken paths. In this case, segmentation process is carried out until
the required level to identify these elements.

On the other hand, digital images are usually affected by some degrading factors as blurring
or noise coming from image acquisition systems or during the transmission-reception process,
resulting in degraded or distorted images of the real world and, as a consequence, yielding inad-
equate segmentation results. A degradation process can be described as a degradation function
H that, together with an additive noise term n, it operates on an input image x and produces a
degraded image y:

y = Hx+n. (1)

Given y, some previous knowledge about the degradation function and some knowledge about
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the additive noise term, the aim is to obtain an estimation x̂ of the original image x for a good
segmentation of the regions or objects into it. The more we know about H and n, the closer x̂
will be to x [1]. The simplest case is when the degradation function H is modeled as a linear
function, but it could be non linear in many cases and then the problem becomes more complex.
In this work it will be assumed that H is the identity operator and we consider only degradation
due to Gaussian noise.

In general, segmentation methods are based on two basic properties of the pixels in relation
to their local neighborhood, discontinuity and similarity [2, 3]. Methods based on discontinuity
property of the pixels are called boundary-based methods, while methods based on similarity
property are called region-based methods. Unfortunately, these both techniques often fail to
produce accurate segmentation. For example, in boundary-based methods, if an image is noisy
or if its region attributes differ by only a small amount between regions, edge detection may
result in spurious and broken edges. On the other hand, region-based methods always provide
closed contour regions and make use of relatively large neighborhoods in order to obtain suf-
ficient information to decide the aggregation of a pixel into a region. This tends to sacrifice
resolution and detail in the image, which can result in segmentation errors at the boundaries of
the regions, and in failure to distinguish regions that would be small in comparison with the
block size used [2].

To overcome these difficulties, the use of Markov random fields (MRF) within a Bayesian
framework has become a powerful method and has been used in different works and different
areas such as medicine [4–8], texture modeling [9–11], image segmentation and restoration
[12–18] and SAR imagery classification [10], [19–21]. This is because enables posing this
problem, and many others in image processing, as statistical estimation problems [9] where
the solution is going to be estimated from the degraded image. Prior distributions of images,
which encode contextual constraints [14], can be modeled with MRF. The basic premise is that
neighborhood pixels are expected to have similar characteristics [10]. Because MRF models
state global statistics in terms of local neighborhood, all computations are restricted to a local
window. Typical MRF algorithms visit all sites in the image in a specific order and execute a
local computation at each site; this is repeated until some convergence criterion is reached [9].

Usually, information data (input image) is not enough for an accurate estimation of the orig-
inal image, so the regularization of the problem is necessary. This means that a priori infor-
mation or assumptions about the structure of x need to be introduced in the estimation process
[16]. The a priori knowledge is given in terms of a probability distribution. This distribution,
together with a probabilistic description of the noise that corrupts the observations, allows the
use of Bayes theory to compute the posterior distribution which represents the likelihood of a
solution x given the observations y [22].

Statistical methods look for the solution that best matches the probabilistic behavior of
the data. Maximum likelihood (ML) estimation selects the reconstruction which most closely
matches the data available. Maximum a posteriori (MAP) estimation allows the introduction of
a prior distribution that reflects knowledge or beliefs concerning the types of images acceptable
as estimates of the original one [4]. There is a wide variety of MRF models; the difference
between them lies on the choice of a potential function. Each of them characterizes the inter-
actions between pixels in the same local group by assigning a larger cost to configurations of
pixels which are less likely to occur. The main idea is to avoid excessive penalties extracted,
for instance, by the Gaussian’s quadratic potential function, which tends to blur edges due to
the high cost of abrupt transitions [5].

In this work, we introduce a novel potential function named semi Huber MRF as a pro-
posal of a new algorithm for image segmentation. The main advantage of this model lies in the
fact that the hyperparameters to be tuned for an adequate result are less than those needed by
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other models that were taken as a reference to verify the results of the proposed one. Section
2 provides an overview about the Bayesian approach. Section 3 includes a theoretical basis of
Markov random fields and describes the MAP estimators used in this work as a reference. A
description of the proposed model and its corresponding MAP estimator is provided in section
4. Some results and comments for image segmentation experiments are presented in section 5.
Finally, in section 6 some conclusions are given.

2. The Bayesian approach

Problems consisting on finding the solution of the model to restore some or all features of the
objects in an image using assumptions about the real world are called inverse problems. A com-
mon approach to solve this kind of problems is the Bayesian modeling. A Bayesian model is
a statistical description of an estimation problem that consists of three components. The first
component, the prior model p(x) that is a probabilistic description of the real world or its prop-
erties, that we are trying to estimate, before collecting data. The second component, the sensor
model p(y|x), is a description of the behavior of noise or stochastic characteristics that relate
the original state x to the sampled input image or sensor values y. These two components can
be combined to obtain the third component, the posterior model p(x|y), which is a probabilistic
description of the current estimation of the original scene x, given the observed data y. The
model is obtained using the Bayes rule:

p(x|y) = p(y|x)p(x)
p(y)

, (2)

where p(y) is the density function of y and is constant if the observed image is provided [21].
To use Bayesian modeling in image processing, it is necessary to encode somehow the

smoothness inherent in the image. This can be done by describing the correlation between adja-
cent pixels of the image in the prior model, and a simple method for modeling such correlation
are the Markov random fields [23].

In its usual application [12], Bayesian modeling is used to find the maximum a posteriori
(MAP) estimate, that is, the value of x that maximizes the conditional probability p(x|y). It is
one of the more efficient and most used estimators [4, 5, 8, 9, 18] defined by:

x̂MAP = argmax
x∈X

{p(x|y)}
= argmax

x∈X
{log p(y|x)+ logg(x)}, (3)

where g(x) is a MRF function that models prior information of the phenomena to be estimated
as a probability distribution, X is the set of pixels capable to maximize p(x|y) and p(y|x) is the
likelihood function from y given x [24].

3. Markov random fields and MAP estimators

In this section, some previous concepts about Markov random fields are given. Then we present
and describe some existing MRF models that were taken as a reference in order to evaluate the
performance of our proposal. Finally, the corresponding MAP estimators for each model are
defined.

Let S= {(i, j)|1 ≤ i ≤ m,1 ≤ j ≤ n} be the set of sites of a rectangular lattice for a 2D image
of m×n size. Its elements correspond to the locations where an image is sampled. The sites in
S are related to one another via a neighborhood system defined as

N= {Ni|i ∈ S},
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Fig. 1. Neighborhood sets for a single site of a lattice.

Fig. 2. Cliques for the second order neighborhood system.

where Ni is the set of sites neighboring i. Figure 1(a) shows first order neighborhood with four
neighbors, second order neighborhood is shown in Fig. 1(b) with eight neighbors, and Fig. 1(c)
shows higher order neighborhoods.

A clique c is defined as a subset of sites in S that consists of a single site c = {i}, a pair
of neighboring sites c = {i, i′}, a triple of neighboring sites c = {i, i′, i′′}, and so on. All posi-
ble cliques for the second order neighborhood system are displayed in Fig. 2 [19, 25]. The
Hammersley-Clifford theorem establishes the equivalence between Markov random fields and
Gibbs random fields [12, 21, 25, 26], so the MRF can be determined by defining the potential
function in a Gibbs distribution, whose basic form is given by

g(x) =
1
Z

exp

(

− 1
T

U(x)

)

, (4)

where

Z = ∑
x∈X

exp

(

− 1
T

U(x)

)

,

is the partition function and in practice is a normalization constant value. T is the temperature
parameter, that controls the sharpness of the distribution [12] and in practice is assumed to be
1 [25]. U(x) is the energy function such that

U(x) = ∑
c∈C

Vc(x), (5)

which is determined as a sum of clique potentials Vc(x) over all posible cliques C in the neigh-
borhood [8, 19, 21, 25]. Most segmentation approaches based on MRF use the multi-level lo-
gistic (MLL) model to define the potential function. Usually the second order pairwise cliques
are selected and the potentials of all non-pairwise cliques are defined to be zeros [21]. In that
sense, we will consider in this work simple MRF’s based on a second order neighborhood (eight
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sites) and potential functions of the form ρ(λ (xi − x j)) which act on pairs of sites, where λ is
a constant that scales the difference between pixel values.

3.1. Generalized Gaussian MRF (GGMRF)

A common choice for the prior model is a Gaussian Markov random field (GMRF). The dis-
tribution for a random field of this kind has the form

g(x) =
λ
√

2

(2π)N/2
|B|1/2 exp(−λ 2xtBx),

where B is a symmetric positive definite matrix, named the precision matrix, λ is a constant
and xt is the transpose of x. To make this to correspond to a Gibbs distribution with neighbor-
hood system ∂ s, it is imposed the constraint that Bsr = 0 when s is not in ∂ r and s �= r. This
distribution may then be rewritten, to form the log likelihood, as

logg(x) =−λ 2

(

∑
s∈S

asx
2
s + ∑

{s,r}∈C
bsr|xs − xr|2

)

,

where as = ∑r∈S Bsr and bsr =−Bsr.
The generalization of the GMRF is made by replacing the power 2 by p, where 1 ≤ p ≤ 2

and λ is a parameter inversely proportional to the scale of x [5]. The potential function for a
GGMRF is then

logg(x) =−λ p

(

∑
s∈S

asx
p
s + ∑

{s,r}∈C
bsr|xs − xr|p

)

+ c, (6)

where as ≥ 0 and bsr > 0, s is the site of interest, r corresponds to the local neighbors and c is
a constant term. In practice it is recommended to take as = 0 for Gaussian noise assumption,
thus the unicity of the MAP estimator can be assured, resulting in

logg(x) =−λ p

(

∑
{s,r}∈C

bsr|xs − xr|p
)

+ c. (7)

Here, bsr is a constant that depends on the distance between pixels s and r. The selected value
for power p is determinant, since it constrains the convergence speed of the local or global
estimator and the quality of the estimated image [24].

3.2. Welsh’s potential function.

The Welsh’s potential function, proposed by Rivera [16] as a hard redescender potential func-
tion with granularity control, is defined as

logg(x) =−λ

(

μ ∑
{s,r}∈C

bsrϕ1(x)+(1−μ) ∑
{s,r}∈C

bsrρ2(x)

)

+ c, (8)

where μ is the granularity control parameter, ϕ1(x) = e2 with e = (xs − xr),

ρ2(x) = 1− 1
2k

exp(−kϕ1(x)), (9)

and k is a positive scale parameter for edge preservation.
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3.3. Tukey’s potential function.

Another hard redescender potential function also proposed by Rivera [16] is the Tukey’s poten-
tial function with granularity control, given by

logg(x) =−λ

(

μ ∑
{s,r}∈C

bsrϕ1(x)+(1−μ) ∑
{s,r}∈C

bsrρ3(x)

)

+ c, (10)

where, in this case

ρ3(x) =

{

1− (

1− (2e/k)2
)3
, for |e/k|< 1/2,

1, in other case,
(11)

k is also a scale parameter and μ provides the granularity control too.

3.4. MAP estimators

With Eq. (3) and the MRF’s previously defined, the corresponding MAP estimators are de-
duced. The MAP estimator for a GGMRF [5] is given by

x̂MAPgg = argmin
x∈X

{

∑
s∈S

|ys − xs|q +σqλ p ∑
{s,r}∈C

bsr |xs − xr|p
}

, (12)

where the term ∑s∈S |ys−xs|q stands for the term log p(y|x), and the term σqλ p ∑{s,r}∈C bsr|xs−
xr|p corresponds to the term logg(x) of Eq. (3). This applies for the other models. The mini-
mization problem can be solved from a global or local point of view considering various meth-
ods [16, 28, 29, 30]. As global iterative techniques we have the descendent gradient, the conju-
gate gradient, the Gauss-Seidel, among others. Local minimization techniques work minimizing
at each pixel xs. In this work the Levenberg-Marquardt algorithm was used for local minimiza-
tion, because all the parameters included into the potential functions were chosen heuristically
or according to values proposed in references [24]. Thus, local estimation is implemented with
the expression

x̂s gg = argmin
x∈X

{

|ys − xs|q +σqλ p ∑
r∈∂ s

bsr|xs − xr|p
}

, (13)

where the subset ∂ s stands for the sites in the neighborhood. Estimator performance depends
on the chosen values for parameters p and q. For example if p = q = 2, we have the Gaussian
condition for the potential function and the obtained estimator is similar to the least-square one
since the likelihood function is quadratic. Moreover, when p = q = 1, the criterion is absolute
and the estimator converges to the median one; nevertheless, this criterion is not differentiable
at zero and it causes instability in the minimization process [24]. The form of the first term
in Eq. (12) depends on the type of noise regarded. For all experiments made in this work we
assumed that noise has a Gaussian distribution with mean value μn and variance σ2

n . From this
idea, the corresponding value for parameter q was set at 2.

As a second MAP estimator we introduce in the second term of Eq. (3) the Welsh’s potential
function [16]

x̂MAPwel = argmin
x∈X

{

∑
s∈S

|ys − xs|2 +λ

(

μ ∑
{s,r}∈C

bsrϕ1(x)+(1−μ) ∑
{s,r}∈C

bsrρ2(x)

)}

. (14)

In the same context, local estimation for this model is given by

x̂s wel = argmin
x∈X

{

|ys − xs|2 +λ

(

μ ∑
r∈∂ s

bsrϕ1(x)+(1−μ) ∑
r∈∂ s

bsrρ2(x)

)}

. (15)
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Fig. 3. Semi-Huber cost function.

Finally, the last MAP estimator used as a reference, corresponds to the Tukey’s potential
function [16], which is given by the expression

x̂MAPtuk = argmin
x∈X

{

∑
s∈S

|ys − xs|2 +λ

(

μ ∑
{s,r}∈C

bsrϕ1(x)+(1−μ) ∑
{s,r}∈C

bsrρ3(x)

)}

, (16)

where the local estimation is obtained by

x̂s tuk = argmin
x∈X

{

|ys − xs|2 +λ

(

μ ∑
r∈∂ s

bsrϕ1(x)+(1−μ) ∑
r∈∂ s

bsrρ3(x)

)}

. (17)

4. Semi-Huber proposal

For logg(x) in Eq. (3), we introduce the Huber-like norm or semi-Huber potential function,
which has been used in one dimensional robust estimation problems [27] for the case of non-
linear regression. This function has been modified for the two dimensional case according to
the following equation:

logg(x) =−λ

(

∑
{s,r}∈C

bsrρ1(x)

)

+ c, (18)

where s is the site of interest, r corresponds to the local neighbors, c is a constant term and

ρ1(x) =
Δ2

0

2

(√

1+
4ϕ1(x)

Δ2
0

−1

)

. (19)

Here Δ0 > 0 is a constant value and ϕ1(x) = e2 with e = (xs − xr).
Semi-Huber potential function is shown in Fig. 3 for Δ0 = 1. Near zero the function is

quadratic and for values beyond ±1, the function is almost linear. This linear region of the
function allows sharp edges, while convexity makes MAP estimate efficient to compute.

The MAP estimator corresponding to the proposed semi-Hubber potential function, Eq. (18)
[24, 27], is given by:

x̂MAPqh = argmin
x∈X

{

∑
s∈S

|ys − xs|2 +λ ∑
{s,r}∈C

bsrρ1(x)

}

. (20)
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Fig. 4. Top row: original brain image, brain image corrupted by Gaussian noise and the
segmentation result using the semi-Huber MRF. Bottom row: segmentation result using the
GGMRF, segmentation result using the Welsh’s MRF and segmentation result using the
Tukey’s MRF.

Equation (20) is simplified to obtain:

x̂s qh = argmin
x∈X

{

|ys − xs|2 +λ ∑
r∈∂ s

bsrρ1(x)

}

, (21)

for local MAP estimation in a single site.

5. Experiments and results

In this section, we present a set of experiments to show the performance of the proposed model
in the segmentation of some images. In all cases, we used the Levenberg-Marquardt algorithm
provided in the optimization toolbox of MATLAB R2009a for the local minimization stage.
For this algorithm, we need to introduce the initial value, X0, to start the search of the solution.
It was observed that the final result depended on the choice of this value, which adds one
additional hyperparameter to the segmentation process.

All the tests was executed on a Mac Pro computer with a 2×2.8 GHz Quad-Core Intel Xeon
processor and 2 GB at 800 MHz DDR2 RAM. The first experiment was carried out with an im-
age of the brain, trying to segment in three tissues: gray matter, white matter and cerebrospinal
fluid. Figure 4 shows segmentation results of the brain image corrupted by centered Gaussian
noise, n ∼ N(0, Iσ2

n ). In top row from left to right we have the original brain image, brain im-
age with noise (σ2

n = 10), and segmentation result using the semi-Huber MRF. In the bottom
row we have the segmentation result using the GGMRF, segmentation result using the Welsh’s
MRF and segmentation result using the Tukey’s MRF. Table 1 shows computation times taken
by each model, and Table 2 shows the list of hyperparameters to be tuned.

It can be seen that visual result obtained with the proposed model is good enough with respect
to those obtained with the others and difference in computation times is not significant. What
matters here is the fact that, from the original semi-Huber MRF model, we only had to adjust
one hyperparameter value, Δ0 in this case, keeping λ = 1 (two if one takes into account the
initial value in the optimization stage). Therefore, the number of times that it was necessary to
run the segmentation process was significantly lower than with other models.
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Table 1. Computation times taken by each model of MRF for segmentation of brain image.

Image Model Time (s)

brain slice Semi-Huber 339.1406
(187×161) GGMRF 339.0461

Welsh 334.0902
Tukey 332.3922

Table 2. List of parameter values for segmentation results in Fig. 4.

Semi-Huber GGMRF Welsh Tukey

Δ0 = 150 σ = 0.3 λ = 10 λ = 10
X0 = 80 λ = 40 k = 10 k = 10

p = 1.5 μ = 0.5 μ = 0.5
X0 = 80 X0 = 58 X0 = 58

Fig. 5. Top row: original dike image, dike image corrupted by Gaussian noise and the
segmentation result using the semi-Huber MRF. Bottom row: segmentation result using the
GGMRF, segmentation result using the Welsh’s MRF and segmentation result using the
Tukey’s MRF.

A second experiment was made with a geographical image of Paso de las Piedras dam,
located in Argentina, taken from Google Earth. In this case, the main interest is on segment
water from no water in spite of the noise present. Figure 5 shows segmentation results of the
dike image. In top row from left to right we have the original dike image, dike image corrupted
by Gaussian noise with σ2

n = 20, and segmentation result using the semi-Huber MRF. In the
bottom row we have the segmentation result using the GGMRF, segmentation result using the
Welsh’s MRF and segmentation result using the Tukey’s MRF. Table 3 shows times taken by
each model and Table 4 shows the list of hyperparameters values by which results presented in
Fig. 5 were obtained.

Here, it can be seen that with the semi-Huber proposed model, noise reduction looks more
satisfactory than GGMRF model for example, where we can see in the water region, bigger gray
points than the others. Even though the semi-Huber model took the longest time, the relative
difference is negligible.

From a third experiment, we show segmentation results for a geographical image of Villaher-
mosa Tabasco city, from the German Spatial Agency, taken by the german satellite TerraSAR-X
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Table 3. Computation times taken by each model of MRF for segmentation of dike image.

Image Model Time (s)

dike image Semi-Huber 713.5470
(310×208) GGMRF 704.3832

Welsh 704.6216
Tukey 697.2369

Table 4. List of parameter values for segmentation results in Fig. 5.

Semi-Huber GGMRF Welsh Tukey

Δ0 = 60 σ = 0.4 λ = 10 λ = 10
X0 = 90 λ = 200 k = 10 k = 10

p = 1.4 μ = 0.5 μ = 0.5
X0 = 80 X0 = 128 X0 = 128

Fig. 6. Top row: original satellite image of Villahermosa, Tabasco, image corrupted by
Gaussian noise and the segmentation result using the semi-Huber MRF. Bottom row: seg-
mentation result using the GGMRF, segmentation result using the Welsh’s MRF and seg-
mentation result using the Tukey’s MRF.

in november 13th 2007. Figure 6 shows in top row from left to right: original image, image cor-
rupted by Gaussian noise with σ2

n = 20, and segmentation result using the semi-Huber MRF. In
the bottom row we have the segmentation result using the GGMRF, segmentation result using
the Welsh’s MRF and segmentation result using the Tukey’s MRF.

In this case, computation times during the segmentation process for each model had a similar
behavior than in the previous cases. It means, there was not a significant difference between
them, being about 575 s on average for a 282×190 image size. Again, we remark the advantage
that using semi-Huber potential function, fewer parameters have to be tuned according to the
type of image, which allows faster segmentation results.

In order to construct a more objective assessment of the results in numeric form, we also
included an experiment performed with a synthetic image of the chessboard type, which was
degraded with Gaussian noise and then segmented, applying the three models of reference and
the proposed one. Two error measures were considered, from segmented images with respect
to the original, namely the mean square error (MSE) and the mean absolute error (MAE).

Figure 7 shows the synthetic image to the left, and to the right, we have the same image
degraded by Gaussian noise with σ2

n = 20. Figure 8 contains the segmentation results obtained
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Fig. 7. Synthetic image, original and degraded by noise.

Fig. 8. Segmentation results of the chessboard synthetic image corresponding to each
model.

with each model. From left to right we have the segmentation result using the semi-Huber
MRF, segmentation result using the GGMRF, segmentation result using the Welsh’s MRF and
segmentation result using the Tukey’s MRF. Numerical results of the error measures are shown
in Table 5, where it can be seen that the proposed model presents another advantage, the smaller
error measures.

Table 5. Numerical results of the error measures for the segmentation of the synthetic image
with each model.

Model MSE MAE

Semi-Huber 0.0416 0.2014
GGMRF 0.0514 0.2271

Welsh 0.1476 0.5046
Tukey 0.1475 0.5044

6. Conclusion

It was proposed the semi-Huber MRF model to construct a novel algorithm for image segmen-
tation. We verified that this proposal has a satisfactory performance. Times in execution were
similar and visual segmentation results were agree with those obtained from models reported
in other works. In the case of the Generalized Gaussian, Welsh’s and Tukey’s Markov random
fields, several tests had to be made to find adequate parameter values for each kind of image,
since one has more degrees of freedom. While, for the semi-Huber MRF we obtained good re-
sults with fewer tests because the parameter adjustment is less complicated. On the other hand,
the proposed model produced very good results concerning to error measures. Some of the ex-
periments presented were made on geographical images because we pretend an application on
the analysis of this kind of images, properly that concerning to hydrographic resources.
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