
applied  
sciences

Article

Comparison of Convolutional Neural Network
Architectures for Classification of Tomato
Plant Diseases

Valeria Maeda-Gutiérrez 1,†, Carlos E. Galván-Tejada 1,*,† , Laura A. Zanella-Calzada 1,† ,
José M. Celaya-Padilla 2 , Jorge I. Galván-Tejada 1, Hamurabi Gamboa-Rosales 1 ,
Huizilopoztli Luna-García 1 , Rafael Magallanes-Quintanar 1, Carlos A. Guerrero
Méndez 1 and Carlos A. Olvera-Olvera 1

1 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro,
Zacatecas 98000, Mexico; valeria.maeda@uaz.edu.mx (V.M.-G.); lzanellac@uaz.edu.mx (L.A.Z.-C.);
gatejo@uaz.edu.mx (J.I.G.-T.); hamurabigr@uaz.edu.mx (H.G.-R.); hlugar@uaz.edu.mx (H.L.-G.);
tiquis@uaz.edu.mx (R.M.-Q.); guerrero_mendez@uaz.edu.mx (C.A.G.M.); colvera@uaz.edu.mx (C.A.O.-O.)

2 CONACYT–Universidad Autónoma de Zacatecas–Jardín Juarez 147, Centro, Zacatecas 98000, Mexico;
jose.celaya@uaz.edu.mx

* Correspondence: ericgalvan@uaz.edu.mx; Tel.: +52-492-5440968
† These authors contributed equally to this work.

Received: 4 November 2019; Accepted: 19 December 2019; Published: 12 February 2020
����������
�������

Abstract: Tomato plants are highly affected by diverse diseases. A timely and accurate diagnosis
plays an important role to prevent the quality of crops. Recently, deep learning (DL), specifically
convolutional neural networks (CNNs), have achieved extraordinary results in many applications,
including the classification of plant diseases. This work focused on fine-tuning based on the
comparison of the state-of-the-art architectures: AlexNet, GoogleNet, Inception V3, Residual Network
(ResNet) 18, and ResNet 50. An evaluation of the comparison was finally performed. The dataset
used for the experiments is contained by nine different classes of tomato diseases and a healthy
class from PlantVillage. The models were evaluated through a multiclass statistical analysis based
on accuracy, precision, sensitivity, specificity, F-Score, area under the curve (AUC), and receiving
operating characteristic (ROC) curve. The results present significant values obtained by the GoogleNet
technique, with 99.72% of AUC and 99.12% of sensitivity. It is possible to conclude that this
significantly success rate makes the GoogleNet model a useful tool for farmers in helping to identify
and protect tomatoes from the diseases mentioned.

Keywords: tomato plant diseases; deep learning; convolutional neural networks; classification

1. Introduction

Tomato (Lycopersicon esculentum) occupies a prominent place in the Mexican agricultural economy.
In fact, Mexico is the world’s leading supplier of tomatoes, with an international market share of
25.11% of the value of world exports [1]. According to the Servicio de Información Agroalimentaria y
Pesquera (SIAP), it is estimated that tomato exports will grow up to 3.84 million tons in 2024.

Healthy plants need to be protected from diseases to guarantee the quality and quantity of crop
since they are highly affected by diseases which cause dramatic losses in agricultural economy [2,3].

It is important to mention that providing early monitoring is essential for choosing the correct
treatment and stopping the disease from spreading [4]. Commonly, the detection and identification
of diseases is achieved by experts by simple observation [4]. However, this task needs continuous
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monitoring by experts [5] since it can be erroneously diagnosed by farmers because they usually judge
the symptoms by their experience; thus, a precise recognition technology is essential for this task.

Deep Learning (DL) is taking major advances in solving problems because the adaptability
of computer vision techniques tan can be adapted, and its results outperform the state-of-the-art
in several topics [6]. According to Ferentinos [7], DL refers to the use of artificial neural networks
(ANNs) architectures that contain a quite large number of processing layers, as opposed to “shallower”
architectures of more traditional ANN methodologies. The main advantage of DL is the ability to
exploit directly raw data without using hand-crafted features [3].

In DL, Convolutional Neural Networks (CNNs) are a class of deep ANN, and they have many
applications, including complex tasks, such as image classification and object recognition, which lead
to a significant improvement in image classification in several topics, such as agriculture. Motivated
by the DL breakthrough and the rapid development of CNNs, many powerful architectures have
emerged, such as AlexNet [8], GoogleNet [9], Inception V3 [10], Residual Network (ResNet) 50,
and ResNet 18 [11].

In this work, the architectures previously mentioned are used to classify tomato diseases, in order
to develop a comparison between these CNN architectures performance, supporting in the selection
of an automatic system that allows the extension of its the applications in the field of agriculture.
The main contribution of this paper focuses on a detailed description of the operation of each ANN, in
addition to its implementation to be applied in a database composed of a series of images related to
diseased tomato plants and, in this way, to be able to objectively know through a direct comparison
the behavior of the different ANNs for future applications. On the other hand, with the aim of
determining which is the architecture that best models the problem and achieves a good classification
of tomato plant diseases and validating it through different statistical metrics, the CNN models can be
implemented in this way as an automated system designed to identify plant diseases, which could be
of great help to technicians and experts in agriculture.

The rest of this paper is organized as follows: Section 2 presents an overview of related work.
Section 3 introduces the five state-of-the-art CNN architectures and the experiments. Section 4 shows
the results. Section 5 holds the discussion and, finally, Section 6 reports the final conclusions.

2. Related Work

In recent years, the research of agricultural plant disease classification has been a relevant topic.
Developing a reliable system that is applicable for a large number of classes is a very challenging task.
Due to this, several studies have been using CNNs for classification and detection of diseases. In the
case of Kawasaki et al. [12], it is proposed the use of CNNs to distinguish healthy cucumbers from
unhealthy by using images of leaves. The authors introduced a CNN architecture, which uses the
Caffe framework [13], including convolutional layers, pooling layers, and local contrast normalization
layers. They achieved an accuracy of 94.9% under the 4-fold cross-validation strategy.

Another approach for cucumber leaf diseases classification is that proposed by Fujita et al. [14],
which presents a CNN composed by four convolutional layers, pooling, and local response
normalization (LRN) operations. The parameters of the LRN were the same parameters from AlexNet
architecture. At last, their classification system attained an average of 82.3% accuracy under the 4-fold
cross validation strategy.

Sladojevic et al. [15] developed a plant disease recognition model, based on leaf image
classification, by the use of CNNs. Their developed model is able to recognize 13 different types of
plant diseases. In addition, they use Caffe as the DL framework. The experimental results showed
a precision between 91% and 98%, and the final overall accuracy of the trained model was 96.3%.

On the other hand, Mohanty et al. [16] evaluated well-known architectures of CNNs, AlexNet
and GoogleNet, to identify 14 crops species and 26 diseases by using the PlantVillage dataset [17].
They used different training-test distributions to measure the CNN performance: 80–20, 60–40, 50–50,
40–60, and 20–80%. Finally, the performance of their models was based on the ability to predict the
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correct crop diseases pair. The best performing model achieves a mean F1 score of 0.9934 (overall
accuracy of 99.35%).

Moreover, Nachtigall et al. [18] made use of CNNs to detect and classify nutritional deficiencies
and damage on apple trees. AlexNet was used as CNN architecture, so they made a comparison
between Multilayer Perceptron (MLP) and the CNN, which was compared with seven volunteer
experts. The results showed an accuracy of 97.3% obtained by CNN, while the human experts had
96%, and the MLP obtained the lowest accuracy at 77.3%.

Furthermore, Brahimi et al. [3] introduced CNN as a learning algorithm for classifying tomato
diseases. They used the standard architectures, AlexNet and GoogleNet, and they concluded that
DL outperforms other classification techniques (e.g., Random Forest, Support Vector Machine).
For comparison purposes, they computed accuracy, macro precision, macro recall, and macro F-score.
They obtained results reaching 99.18% accuracy.

DeChant et al. [19] applied a CNN architecture to classify northern leaf blight lesions on images
of maize plants. From the total number of images, 70% were used for training, 15% for validation,
and 15% for testing. Their proposed system achieved 96.7% accuracy on test set images not used in
training. Additionally, Lu et al. [20] presented a novel rice diseases identification method based on
CNNs techniques; the architecture used to identify 10 common rice diseases was AlexNet, and finally,
the model achieved an accuracy of 95.48% under 10-fold cross validation.

In addition, Brahimi et al. [6] tested multiple state-of-the-art CNN (AlexNet, DenseNet 169 [21],
Inception V3, ResNet 34 [11], SqueezeNet 1.1 [22], and Visual Geometry Group (VGG) 13 [23]) for
plant diseases classification using three different strategies. Two of these are based on transfer learning,
and the last one was based on shallow strategy. The dataset was divided into 80% for training and
20% for evaluation. The final model accuracy reached was 99.76%, and they concluded that the
most successful learning strategy was transfer learning. It is important to note that one of the main
differences between this work and the one proposed here are the ANNs implemented for comparison
since, based on the results of this work, the selection of an ANN was limited to only three of those that
were used, including GoogleNet and other versions of ResNet, that presented significant results in the
literature.

Moreover, Wang et al. [24] proposed a DL approach to estimate disease severity. The best
model was VGG 16 trained with transfer learning, which yields an overall accuracy of 90.4% on the
hold-out test set. On the other hand, Wang et al. [25] introduced a method for crop disease images
classification by combining CNN and transfer learning. Their CNN with five convolutional layers
reached 90.84% and demonstrated that the combination of CNN and transfer learning strategy is
effective for classification of various crop diseases.

Rangarajan et al. [26] used AlexNet and VGG 16 for classifying six different diseases and a healthy
class of tomato. The performance was evaluated by modifying the number of images, setting different
batch sizes, and varying the weight and bias learning rate. They concluded that AlexNet provides
a better accuracy with the minimum execution time compared to VGG 16. It should be noted that,
taking into account that this work is also aimed at the classification of diseases present in tomato plants,
the development of the proposed methodology is based on the results reported by this comparison,
allowing support in the delimitation of the work and selection of architectures to implement, while
being able to discard the implementation of VGG 16 due to the disadvantages that it presents in
comparison with AlexNet, especially in the computational cost.

Finally, Khandelwal and Raman [27] detected plant diseases using different state-of-the-art
approaches. In this work, their model was able to attain a high average accuracy of 99.374% using
transfer learning. Table 1 summarizes the studied approaches and methodologies that use DL models
for plant diseases classification, where the results are based on accuracy, as well as the metrics that
they used and the final results that are based on accuracy.
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Table 1. Summary of techniques and comparison between studies for classification plant diseases.

Author and Year Number of Classes Number of Images CNN Architecture Measures Accuracy

Kawasaki, Y. et al. [12]—2015 3 800 Customized
Accuracy
Sensitivity
Specificity

94.90%

Sladojevic, S. et al. [15]—2016 15 4483 CaffeNet Accuracy 96.30%

Mohanty et al. [16]—2016 38 54,306
AlexNet

GoogleNet

F1 Score
Mean Precision

Mean Recall
Accuracy

99.34%

Nachtigall, L.G. et al. [18]—2016 5 1450 AlexNet
Recall

Precision
Accuracy

97.30%

Fujita, E. et al. [14]—2016 7 14,840 Customized
Sensitivity
Specificity
Accuracy

82.30%

Brahimi, M. et al. [3]—2017 9 14,828
AlexNet

GoogleNet

Accuracy
Macro Precision

Macro Recall
99.18%

DeChant, C. et al. [19]—2017 2 1796 Customized

Accuracy
Precision

Recall
F1 Score

96.70%

Lu, Y. et al. [20]—2017 10 500 AlexNet Accuracy 95.48%

Wang, G. et al. [24]—2017 4 2086

VGG 16
VGG 19

Inception V3
Residual Network (ResNet) 50

Accuracy 90.4%

Brahimi, M. et al. [6]—2018 38 54,323

AlexNet
DenseNet 169
Inception V3

ResNet 34
SqueezeNet 1.1

VGG 13

Accuracy 99.76%

Wang, J. et al. [25]—2018 5 2430 Customized Accuracy 90.84%

Rangarajan, A.K. et al. [26]—2018 7 13,262
AlexNet
VGG 16 Accuracy 97.49%

Khandelwal, I. et al. [27]—2018 57 86,198
Inception V3

ResNet 50 Accuracy 99.374%
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Based on these related works, it was decided to limit the inclusion of the ANN: AlexNet,
GoogleNet, Inception V3, ResNEt 18, and ResNet 50, to carry out the comparison proposed in this
work. These ANN were selected due to the significant behavior with which they have been reported,
supported by their results.

3. Materials and Methods

This section describes the details of the CNNs implemented for plant disease classification of
tomato plant leaves in this work. This study concentrates on finding the most appropriate pre-trained
CNN model. The entire procedure is divided into 4 basic steps: data acquisition, data training, data
classification, and data evaluation, which are detailed below.

3.1. Data Acquisition

The PlantVillage - Dataset is an open repository that contains 54,323 images of 14 crops and 38
kinds of plant diseases [17]. From this dataset, only images of tomato leaves were extracted. Figure 1
shows one example of each sample class, and Table 2 gives a summary of our dataset. The total number
of images in our dataset is 18,160, divided into nine diseases and a healthy class. All the images used
in this work were already cropped to be 224 × 224 or 299 × 299, according to the network input size.
Finally, the data was separated into two sets, containing 80% of the data in the training set and the
remaining 20% in the testing set. The choice of the split is based on Mohanty et al.’s proposal [16].

Figure 1. Sample images from PlantVillage - Dataset. (Top row, left to right): (a) Bacterial Spot, (b) Early
Blight, (c) Healthy, (d) Late Blight, and (e) Leaf Mold. (Bottom row, left to right): (f) Septoria Leaf Spot,
(g) Spider Mites, (h) Target Spot, (i) Mosaic Virus, and (j) Yellow Leaf Curl Virus.

Table 2. Dataset details.

Classes Number of Images

Bacterial Spot 2127
Early Blight 1000
Healthy 1591
Late Blight 1909
Leaf Mold 952
Septoria Leaf Spot 1771
Spider Mites 1676
Target Spot 1404
Mosaic Virus 373
Yellow Leaf Curl Virus 5357
Total 18,160

3.2. Data Training

In this phase, the training of the CNNs was carried out through the dataset, ImageNet (contained
by 1.2 million images belonging to 1000 categories), with the objective of initializing the weights
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before the training on this tomato dataset. On the next stage, we took the advantage of Transfer
Learning [28], which aims to transfer knowledge from one or more domains and apply the knowledge
to another domain with a different target task. The fine-tuning is a transfer learning concept, which
consists on replacing the pre-trained output layer with a layer containing the number of classes of the
tomato dataset.

For this work, the last three layers are replaced: a fully-connected layer, a softmax layer,
and a classification output layer. The main purpose of using pre-trained CNN models is related
to the fast and easy training of a CNN using randomly initialized weights [29], as well achievement of
lower training error than ANNs that are not pre-trained [30].

The performance of the following CNN architectures have been evaluated for the tomato plant
classification problem.

Next, the CNNs assessed will be described.

3.2.1. AlexNet

AlexNet was proposed by Alex Krizhevsky et al. [8]. In 2012, the CNN model won the most
difficult challenge, where ImageNet Large Scale Visual Recognition (ILSVRC) [31] evaluates algorithms
for object detection and image classification at large scale. AlexNet, which has 60 million parameters
and 650,000 neurons, consists of five convolutional layers and three fully-connected layers. The first
two convolutional layers are followed by normalization and a max-pooling layer, the third and fourth
are connected directly, and the fifth convolutional layer is followed by a max-pooling layer. The output
goes into a series of two fully-connected layers, in which the second fully-connected layer feed into
a softmax classifier. In order to prevent overfitting in the fully-connected layers, the authors employed
a regularization method called “dropout” with a ratio of 0.5 [32]. Another feature of the AlexNet
model is the use of Rectified Linear Unit (ReLU), which is applied to each of the first seven layers.
The authors mentioned that using ReLU Nonlinearity could train much faster than using the saturating
activation functions of Tanh and Sigmoid.

3.2.2. GoogleNet

GoogleNet is presented in the work of Szegedy et al. [9] and was the winner of ILSVRC
in 2014. GoogleNet possesses seven million parameters and contains nine inception modules,
four convolutional layers, four max-pooling layers, three average pooling layers, five fully-connected
layers, and three softmax layers for the main auxiliary classifiers in the network [33]. In addition,
it uses dropout regularization in the fully-connected layer and applies ReLU activation in all of the
convolutional layers. However, this network is much deeper and wider, with 22 total layers, but has
a much lower number of network parameters compared to AlexNet. A more detailed explanation of
all the relevant parameters of GoogleNet model can be found in the original paper [9].

3.2.3. Inception V3

Inception V3 [10] is a deep convolutional architecture widely used for classification tasks.
The model concept was introduced by Szegedy in the GoogleNet architecture, where Inception V3 was
proposed by updating the inception module [34]. The Inception V3 network has multiple symmetric
and asymmetric building blocks, where each block has several branches of convolutions, average
pooling, max-pooling, concatenated, dropouts, and fully-connected layers. This network has 42 total
layers and possesses 29.3 million parameters, which means that the computational cost is only about
2.5 higher than GoogleNet. Finally, the authors concluded that the combination of lower parameter
count and additional regularization with batch normalized auxiliary classifiers label smoothing allows
training of a high quality network on a relatively modest-sized training sets [10].
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3.2.4. Residual Network (ResNet)

The ResNet models, which are based on deep architectures that have shown good convergence
behaviors and compelling accuracy, were developed by He et al. [11]. Based on this, they won
first place in the ILSVRC and Common Objects in Context (COCO) classification challenge in 2015.
ResNet was built by several stacked residual units and developed with many different numbers of
layers: 18, 34, 50, 101, 152, and 1202. However, the number of the operations can be varied depending
on the different architectures [11]. For all of the above, the residual units are composed of convolutional,
pooling, and layers. ResNet is similar to VGG net [23], but ResNet is about eight times deeper than
VGG [34]. The ResNet 18 represents a good compensation between the depth and performance,
and this network is composed by five convolutional layers, one average pooling, and a fully-connected
layer with a softmax. ResNet 50 contains 49 convolutional layers and a fully-connected layer at the
end of the network. Finally, for saving computing resources and training time, ResNet 18 and ResNet
50 were chosen for the development of this work.

3.2.5. CNN Settings

The CNN settings usually consist of a series of specific elements, which are the ones that present
the variations in the different architectures. Figure 2 graphically presents the general architecture of
a CNN, with its main elements, such as the input layer, convolutional layer, pooling layer, and a process
of flattening, where the information is entered into a set of dense layers, representing the result obtained
in the output layer.

Figure 2. Representation of the architecture of a convolutional neural network (CNN).

Therefore, the characteristics of the architectures used are described in the Table 3.

Table 3. Summary of the utilized architectures.

Network Depth Parameters (Millions) Image Input Size

AlexNet 8 60 227 × 227
GoogleNet 22 7 224 × 224

Inception V3 48 23.9 299 × 299
ResNet 18 18 11.7 224 × 224
ResNet 50 50 25.6 224 × 224

To allow a fair comparison between the experiments, an attempt to standardize the
hyper-parameters across the experiments was also made, using the following hyper-parameters,
which are described in Table 4.

DL has significantly advanced in many research areas. Stochastic Gradient Descent (SGD)
has become the dominant optimization algorithm, proved to be an appropriate trade off between
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the accuracy and efficiency [35]. The SGD is simple and effective, and it requires a tuning of the
model hyper-parameters, particularly the initial learning rate, which is used in the optimization
since it determines how fast the weights are adjusted in order to get a local or global minimum of
the loss function. The momentum helps to accelerate SGD in the suitable direction and dampens
oscillations [36]. In addition, the regularization is a very important technique to prevent the overfitting.
The most common type of regularization is L2 Regularization, where the combination with SGD results
in weight decay, in which each update the weights are scaled by a factor lightly smaller than one [37].
Each experiment runs a total of 30 epochs, where each epoch is the number of the training iteration.
The choice was made due to the results of Mohanty et al.’s proposal [16] because of its consistently
converging after the first step down in the learning rate. Finally, all the CNNs are trained with the
batch size of 32.

Table 4. Hyper-parameters of the experiments. * Stochastic Gradient Descent with Momentum (SGDM).

Hyper-Parameters Value

Optimization algorithm SGDM *
Momentum 0.9000
Initial learning rate 1.0000 × 10−3

L2 Regularization 1.0000 × 10−4

Epochs 30
Batch size 32

Training these CNN architectures is extremely computationally intensive. Therefore, all the
experiments are carried out on a workstation, presenting the details summarized in Table 5.
The training process was conducted by MATLAB 2018b with Deep Learning (DL) Toolbox, which
provides a framework to design and implement CNNs, where applications and graphics help to
visualize network activations and monitor the progress of network training. Meanwhile, the statistical
analysis of each architecture was carried out with the free software R (version 3.5.2) with its pROC and
caret package.

Table 5. Machine specifications.

Hardware and Software Characteristics

Memory 16 Gb
Processor Intel Core i7-7700 CPU @ 3.60 GHz
Graphics GeForce GTX 1070 X 8 Gb

Operating system Windows 10, 64 bits

3.3. Data Classification

The number of the classification output layer is equal to the number of the classes.
Then, each output has a different probability for the input image because these kind of models have
the ability to automatically learn features during the training stage; then, the model picks the highest
probability as its prediction of the the class. Finally, this phase determines which disease is present
in the leaf using the pre-trained set. Figure 3 shows an example of the fine-tuning process where the
three final layers were replaced by our classification task.
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Figure 3. Representation of transfer learning and classification phase.

3.4. Evaluation

The performance of the proposed method is evaluated by comparing the pre-trained models with
different metrics. The quality of the learning algorithms is generally evaluated by analyzing how
well they perform on a test data [38]. The first one is the Receiver Operating Characteristic Curve
(ROC), known as Area Under the Curve (AUC), which is a widely used performance measure in the
supervised classification, and it is based on the relation between sensitivity and specificity [39]. For this
work, was used a generalization of the AUC for multiple classes. This function defined by Hand and
Till [40] performs multiclass AUC, and it is composed by the mean of several AUC values. A data
frame passes as predictor, and the columns have to be named according to the levels of the response.

The sensitivity or recall corresponds to the accuracy of positive examples, and it refers to how
many examples of the positive classes were labeled correctly; this can be calculated with Equation (1),
where TP refers to the true positives, which are the number of instances that are positive and are
correctly identified, and FN represents the false negatives, which are the number of positive cases that
are mis-classified as negative.

Sensitivity(Recall) =
TP

TP + FN
. (1)

Specificity corresponds to the conditional probability of true negatives given a secondary class,
which means that it approximates the probability of the negative label being true; it is represented
by Equation (2), where TN is the number of true negatives or negative cases that are negative and
classified as negative, and FP is the number of false positives, defined by the negative instances that
are incorrectly classified as positive cases.

Speci f icity =
TN

TN + FP
. (2)

In general, sensitivity and specificity evaluates the effectiveness of the algorithm on a single class,
positive and negative respectively.

Commonly, accuracy is the most used metric to evaluate the classification performance. In the
evaluation stage, the accuracy was calculated every 20 iterations. This metric calculates the percentage
of samples that are correctly classified, and it is represented in Equation (3):

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

Precision, defined as the number of true positives divided by the number of true positives plus the
number of false positives, is given by Equation (4). This measure is about correctness, i.e., it evaluates
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the predictive power of the algorithm. Precision is how “precise” the model is out of those predicted
positive and how many of them are actually positive.

Precision =
TP

TP + FP
. (4)

F-score is determined as the harmonic mean precision and recall, as shown in Equation (5).
It focuses on the analysis of positive class. A high value of this metric indicates that the model
performs better on the positive class.

F − score = 2 ∗ Precision ∗ Recall
Precision + Recall

. (5)

4. Results

In this study, an assessment of state-of-the-art pre-trained models for the task of classification of
tomato plant diseases using images was done. The objective of this research was to compare the CNN
models evaluating the accuracy, precision, sensitivity, specificity, F-Score, and AUC by fine-tuning.
The results are shown in Table 6.

Table 6. Performance measures (%) for every pre-trained model.

Performance Measures AlexNet GoogleNet Inception V3 ResNet 18 ResNet 50

Accuracy 98.93 99.39 98.65 99.06 99.15
Precision 98.74 99.29 98.29 98.76 98.94
Sensitivity 98.38 99.12 97.84217 98.67 98.72
Specificity 99.88 99.93 99.85 99.89 99.90
F-Score 98.54 99.20 98.05 98.71 98.82
Area under the curve (AUC) 99.28 99.72 99.20 99.20 99.55
Time (min) 94.17 133.15 649.85 147.73 476.78

All of the models showed a similar and statistically significant performance. Starting with the
AUC, Inception V3 and ResNet 18 had the lower results with 99.2%, followed closely by AlexNet with
99.28%, ResNet 50 with 99.55%, and the best AUC result with GoogleNet, which obtained 99.72%,
representing an almost excellent classification. On the other hand, in the accuracy metric, Inception V3
obtained the lower result with 98.65%, followed by AlexNet, ResNet 18, and ResNet 50 with 98.93%,
99.06%, and 99.1 5%, respectively, and the highest result was obtained by GoogleNet with 99.39%.
In the same way, the order of the precision results were equal to the previous measure, where the lower
percentage was obtained by Inception V3 with 98.28% and the highest by GoogleNet with 99.26%.
Finally, in the sensitivity, specificity, and F-score measurements, the new Inception V3 performance
was poor with 97.84%, 99.84%, and 98.05%, correspondingly, in opposition to GoogleNet, which got
the best percentage in the previous metrics with 99.12%, 99.93%, and 99.20%, respectively. Indeed, as is
shown, all of them achieved statistically significant performance in each measure, but the GoogleNet
implementation achieved the highest percentage. In addition, based on the processing time it took
for each CNN to carry out the classification process, AlexNet showed the best performance by taking
the shortest time, which implies a better efficiency compared to the other architectures, remarking
that its disadvantage in statistical measures is not significant compared to the results of the other
CNNs, so it could be considered to sacrifice a minimum decrease in accuracy in exchange for greater
processing efficiency.

Furthermore, Table 7 presents the confusion matrix of the model with the best outcome based on
the performance measures, which is GoogleNet. Depending on the results, it is possible to visually
evaluate the performance of the classifier and to determine which classes are highlighted by the
neurons of the GoogleNet model. The rows are related with the output class, while the columns



Appl. Sci. 2020, 10, 1245 11 of 15

are related to the true class. The diagonal cells are associated to the observations that are correctly
classified, and the off-diagonal cells correspond to the incorrectly classified observations.

Table 7. Confusion matrix based on GoogleNet model. (1) Bacterial pot; (2) Early Blight; (3) Late Blight;
(4) Leaf Mold; (5) Septoria Leaf Spot; (6) Spider Mites; (7) Target Spot; (8) Yellow Leaf Curl Virus;
(9) Mosaic Virus; and (10) Healthy.

1 2 3 4 5 6 7 8 9 10

1 422 0 0 0 0 0 2 0 0 0

2 1 197 3 1 0 0 0 0 0 0

3 0 1 377 0 0 0 1 0 0 0

4 0 0 0 187 0 0 0 0 0 0

5 0 1 0 0 351 0 0 0 0 0

6 0 1 1 2 0 334 1 0 1 0

7 0 0 0 0 3 1 227 0 0 0

8 2 0 0 0 0 0 0 1071 0 0

9 0 0 0 0 0 0 0 0 73 0

10 0 0 0 0 0 0 0 0 0 318

Among the ten classes, two to ten produced 100% correct classification results since those diseases
have distinctive appearance and features when compared to the other classes, which are mosaic virus
and the healthy class.

Accordingly, the performance measures were calculated for each class, and the obtained results
using GoogleNet model are shown in Figure 4.

Figure 4. Performance results for each class.

Figure 5a presents the multiclass ROC curve obtained based on the performance of the GoogleNet
model with an AUC value of 99.72%. On the other hand, Figure 5b shows the performance of each
class; as shown in the Figure, each class presents a higher fitness.
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(a) (b)

Figure 5. Multiclass receiving operating characteristic (ROC) Curves. (a) Multiclass ROC Curve.
(b) ROC Curve for each class.

5. Discussion

DL presents an opportunity to extend research and the application of the basis for classification
of plant diseases using digital images. The rapid and accurate models are required to detect the
diseases on time. For this work, the dataset used presents nine classes of tomato diseases and a healthy
class, which have a total of 18, 160 images. The dataset was divided into 80–20% (training–testing).
Therefore, five-state-of-the-art pre-trained models, namely AlexNet, GoogleNet, Inception V3, ResNet
18, and ResNet 50, were trained by the concept of fine-tuning, which consists of replacing the last three
layers, where the final output layer has to be compatible with the number of classes.

All of these pre-trained models were evaluated by various metrics: accuracy, precision, sensitivity,
specificity, F-Score, and AUC, using the same hyper-parameters. Based on Table 6, which shows
a general result performance, GoogleNet achieved better results than the other architectures.
In addition, Inception V3, which is one of the deepest CNN models, shows low performance in Table 3.

Firstly, a confusion matrix (Table 7) was achieved, and it shows that two of ten classes produced
a 100% rate of correct classifications, representing mosaic virus and the healthy class. Secondly, the
performance measures were calculated for each class, in order to know which class obtained lower
percentage of the lowest error, based on: sensitivity, specificity, F-Score, and precision, which is because
these measurements represent the model performance; it is possible to determine that the classes with
the smallest error were: leaf mold, mosaic virus, and the healthy class; the class with greatest error was
early blight. All of these were based on the precision metric.

Figure 5 shows that the performance of the GoogleNet model is excellent by the multiclass ROC
curve, and it achieves a statistically significant AUC value of 99.72%, which means that the model
presented a sensitivity and specificity rate that is able to classify the data with only 0.28% error.

On the other hand, one of the limitations of this work was related to the number of images used.
It could be interesting to test the model on a set of images taken under controlled conditions or being
able to classify images of diseases as it presents itself on the plant.

In addition, it could be beneficial to create a mobile application that implements the GoogleNet
model for an automated diagnosis of tomato plant diseases, so users or farmers with a little or no
knowledge can use it to perform their work effectively in the detection of tomato plant diseases.
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It is important to mention that training of the models takes a lot of time (around one or two hours
on a high performance CPU computer), while the classification is very fast on a Graphics Processing
Unit (GPU).

6. Conclusions

This paper proposed a DL method by combining CNN pre-trained models and fine-tuning
for the classification of tomato plant diseases. The aim of this work concentrated on comparing
the performance of AlexNet, GoogleNet, Inception V3, ResNet 18, and ResNet 50 with different
performance metrics. The comparison of these types of models presents the advantages, which are
that CNNs do not require any tedious pre-processing, and they have a faster convergence rate and
a profitable training performance.

The goal was to find the more suitable model for the task. So, every model used in this work
was capable to classify nine diseases in tomato leaves from the healthy class, where the GoogleNet
model with 22 layers can reach 99.72% classification of tomato diseases using the training mechanism
of transfer learning, which is highly statistically significant and demonstrates the effectiveness of
classifying crop diseases with the combination of CNN and fine-tuning adjustment.

On the other hand, Inception V3 obtained the lowest performance compared to the other
architectures, presenting a poor architecture despite its large number of layers. It is expected that the
proposed method will make an important contribution to the agriculture area.
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