
Physica E 119 (2020) 113999

Available online 3 February 2020
1386-9477/© 2020 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Physica E: Low-dimensional Systems and Nanostructures

journal homepage: www.elsevier.com/locate/physe

Enhancement of the Fano-resonance response in bilayer graphene single and
double barriers induced by bandgap opening
J.A. Briones-Torres a, R. Pérez-Álvarez a, R. Pernas-Salomón b, I. Rodríguez-Vargas c,∗

a Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
b Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
c Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km. 6, Ejido La
Escondida, 98160 Zacatecas, Zac., Mexico

A R T I C L E I N F O

Keywords:
Fano resonances
Bilayer graphene
Bandgap opening
Single barriers
Double barriers

A B S T R A C T

Fano resonances in bilayer graphene arise due to the coupling between extended and discrete electrons states,
and represent an exotic phenomenon in graphene akin to Klein and anti-Klein tunneling, atomic collapse and
negative refraction to mention a few. The hallmark of these resonances is identifiable in the conductance curves
of bilayer graphene barrier structures. Furthermore, the Fano line-shape can be presented in the conductance
by reducing the angular range in the computation of the transport properties. In this work, we explore the
possible consequences that bandgap opening in the band structure of bilayer graphene can have over Fano
resonances. We have used a four-band Hamiltonian to taking into account the mentioned band structure
modifications. The hybrid matrix method and the Landauer–Büttiker formalism have been implemented to
obtain the transmittance and the conductance, respectively. We find that the signatures of the Fano resonances
on the conductance are enhanced by the opening of the bandgap. In fact, the Fano profile is manifested in the
conductance without the need of reducing the angular range. This enhancement results from the improvement
of the chirality matching between extended and discrete states induced by the bandgap opening. The main
characteristics of the impact of the bandgap opening on the transmission and transport properties of single
and double barriers are presented. So, the bandgap opening far from hamper the Fano resonance response
promotes it and can be used as modulation parameter to prove the exotic phenomenon of Fano resonances in
bilayer graphene barrier structures.

1. Introduction

Bilayer graphene has become a material that promises great things
in nanotechnology [1–3]. Its outstanding properties such as excellent
electrical conductivity [4], high thermal conductivity [5], the possibil-
ity of modulating its electrical properties through doping [6,7], among
many other put it to compete against its monolayer counterpart, mono-
layer graphene or simply graphene. In particular, bilayer graphene
has a strong advantage due to the possibility of opening a bandgap
and/or doping it through the application of electrostatic fields [8,9].
Bilayer graphene can be obtained by micromechanical exfoliation [10],
its more stable arrangement is known as Bernal, unlike monolayer
graphene it has a structure of four hyperbolic bands, two of them
touching in the 𝐊 point at zero energy and the other two separated
by an energy of 𝛾1 = 390 meV [3].

Regarding exotic effects, monolayer graphene is the 2D material per
excellence. For instance, Klein tunneling [11,12], atomic collapse [13,
14], Hofstadter’s butterfly [15,16] and negative refraction [17,18]
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have been confirmed experimentally in this material. Practically all
these exotic phenomena owe its existence to the special band struc-
ture as well as the quantum relativistic chiral nature of the charge
carriers [10,11]. Under this context, bilayer graphene is not the ex-
ception and exotic effects such as anti-Klein tunneling [11,19], cloaked
states [19,20], unconventional superconductivity [21,22] and Fano res-
onances [23–26] have been reported. In this case the gapless parabolic
band structure and the massive chiral character of the charge car-
riers give rise to these peculiar phenomena. In particular, anti-Klein
tunneling is the perfect reflection of the charge carriers through elec-
trostatic barriers at normal incidence [11,19]. This effect is the result
of the pseudo-spin conservation and the Berry phase 2𝜋 of bilayer
graphene [6]. Cloaked states are nearly invisible confined states in-
side electrostatic barriers [19,20]. In this case the chiral mismatch
between charge carriers inside and outside the barriers is what makes
confined states invisible to charge carriers propagating through the
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barriers. This phenomenon takes place at normal incidence and is
intimately related to anti-Klein tunneling [19]. Another effect that
can be induced in bilayer graphene is superconductivity [21,22]. By
twisting the graphene layers at a magic angle of 1.1◦ a strong correlated
phase typical of unconventional superconductors can arise [21]. This
rather exotic phase is owing to the flattening of the band structure
through the twist angle as well as to the doping by simply gating
bilayer graphene. In the case of Fano resonances, the coupling between
propagating and confined states in electrostatic barriers at oblique
incidence gives rise to the typical asymmetrical line-shape of these
special resonances in the electron transmittance [23–25]. The Fano
profile is quite sensitive to the angle of incidence and Fano resonances
can also be shifted readily by changing the structural parameters of
the barriers. Furthermore, Fano resonances can leave a hallmark in
the transport properties, specifically the conductance [26]. Even more,
by reducing the angular range in the computation of the transport
properties the conductance curves can manifest a Fano profile. In bi-
layer graphene double barriers and superlattices the coupling between
Fano resonances and resonant (miniband) states gives rise to the so
called hybrid resonances [26]. The contribution of these resonances can
be tracked and identified in the conductance curves. Fano resonances
can be considered as exotic as anti-Klein tunneling, cloaked states
and unconventional superconductivity because with simple electro-
static barriers we can have them. This is in stark contrast with the
typical systems in which Fano resonances arise [27]. For instance,
systems in which the superposition of configurations with discrete
states and propagating states give rise to asymmetrical line-shapes in
optical properties. Typically, a light source, a magnetic field or some
other physical effect plays the role of mixing between discrete and
continuum states. Other typical systems are intricate quantum dots
that assure the coupling between system configurations with confined
and continuum states and consequently the asymmetrical line-shape
of Fano resonances in the quantum conductance. For more details
about these typical systems the reader is remitted to the excellent
review of Miroshnichenko and colleagues [27]. Even more, these Fano
resonances that are the result of the chiral matching between electron
states inside and outside the barriers are quite distinct to other Fano
resonances that can arise in bilayer graphene due to the interplay
between light, electrons and phonons [28,29]. In principle, these exotic
electron Fano resonances can be tested experimentally through trans-
port experiments as the anti-Klein tunneling [20], cloaked states [20]
and unconventional superconductivity [22]. An applied electric field or
simply gating has been fundamental in corroborating these phenomena.
With gating we can create electrostatic barriers and/or doped bilayer
graphene. Gating is also technologically appealing because a bandgap
in the band structure of bilayer graphene can be induced. However,
bandgap opening can disrupt the delicate conditions that give rise to
the mentioned exotic effects. For instance, Lu et al. [30] report that
anti-Klein tunneling can be destroyed by the resonant states induced by
a multi-barrier structure in bilayer graphene. Even, the destruction can
take place in the presence of a bandgap. In the case of Fano resonances,
as far as we know, there is no a detail study that tells us to what extent
bandgap opening can disrupt, modify or even destroy them. This could
be quite relevant because if a tiny bandgap destroys the characteristic
asymmetrical line-shape of Fano resonances can be really challenging
to corroborate this phenomenon experimentally.

The aim of this work is to see if Fano resonances are still present
when bandgap opening is considered in the band structure of bilayer
graphene barrier structures. In order to do that a four-band hamiltonian
that accounts for the mentioned band structure modifications has been
considered. The transmittance and conductance of bilayer graphene
barriers structures are obtained within the lines of the hybrid matrix
method and the Landauer–Büttiker formalism, respectively. We find
that the bandgap opening promotes the Fano resonance response on
the transport properties. In particular, the Fano line-shape is obtained
in the conductance without the need of reducing the angular range. The

bandgap opening changes the chiral characteristics of the charge carri-
ers in the barrier regions. These changes improve the chiral matching
between the Dirac electrons inside and outside the barriers, resulting
in an overall enhancement of the Fano resonance response. We carry
out a detail analysis of the impact of the bandgap opening on the
transmission and transport properties of single and double barrier
structures. In concrete, we focus our attention in the modifications
induced by the bandgap opening on Fano and hybrid resonances, which
are natural in single and double barriers.

2. Methodology

The method we will use is very similar to the Sturm–Liouville
formalism and totally compatible with the hybrid matrix method [31–
33]. The details are given below. The Hamiltonian that describes charge
carriers in bilayer graphene to energies of the order of 𝛾0 = 3.09 eV is
given as [30,34]

𝐇 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑉1 𝜋 𝑡⟂ 0
𝜋∗ 𝑉1 0 0
𝑡⟂ 0 𝑉2 𝜋∗

0 0 𝜋 𝑉2

⎞

⎟

⎟

⎟

⎟

⎠

, (1)

where 𝜋 = 𝑣𝐹 (𝑝𝑥 + 𝑖𝑝𝑦), 𝜋∗ = 𝑣𝐹 (𝑝𝑥 − 𝑖𝑝𝑦), also, 𝑝𝑥,𝑦 = −𝑖ℏ𝜕𝑥,𝑦 is the
moment operator, 𝑣𝐹 is the Fermi Velocity, 𝑡⟂ = 390 meV describes the
interaction between layers that meet the potentials 𝑉1 and 𝑉2. Here, it is
important to mention that this hamiltonian takes into account bandgap
opening (when 𝑉1 ≠ 𝑉2) and non-parabolicity in the band structure of
bilayer graphene.

Using the eigenvalue equation and some basic rules of matrices,1 we
can arrive at

𝑑𝐅(𝑥)
𝑑𝑥

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑞𝑦 𝑖 𝑉1−𝐸ℏ𝑣𝐹
0 0

𝑖 𝑉1−𝐸ℏ𝑣𝐹
−𝑞𝑦 𝑖 𝑡⟂

ℏ𝑣𝐹
0

0 0 −𝑞𝑦 𝑖 𝑉2−𝐸ℏ𝑣𝐹
𝑖 𝑡⟂
ℏ𝑣𝐹

0 𝑖 𝑉2−𝐸ℏ𝑣𝐹
𝑞𝑦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⋅ 𝐅(𝑥) = 𝟎4×1. (2)

If we propose a solution of the form 𝐅 = 𝐅0𝑒𝑖𝑞𝑥, and substitute it in
the previous equation, we obtain

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑞𝑦 + 𝑖𝑞 𝑖 𝑉1−𝐸ℏ𝑣𝐹
0 0

𝑖 𝑉1−𝐸ℏ𝑣𝐹
−𝑞𝑦 𝑖 𝑡⟂

ℏ𝑣𝐹
0

0 0 −𝑞𝑦 + 𝑖𝑞 𝑖 𝑉2−𝐸ℏ𝑣𝐹
𝑖 𝑡⟂
ℏ𝑣𝐹

0 𝑖 𝑉2−𝐸ℏ𝑣𝐹
𝑞𝑦 + 𝑖𝑞

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⋅ 𝐅0 = 𝛩(𝑞) ⋅ 𝐅0 = 𝟎4×1. (3)

To obtain the 𝑞-values that vanish the determinant of the secular
matrix 𝛩(𝑞) we solve the fourth-order equation in 𝑞. Then we obtain
analytic expressions for the four eigenvalues

𝑞=±
√

−𝑞2𝑦−
1

2(ℏ𝑣𝐹 )2
[(𝐸−𝑉1)2+(𝐸−𝑉2)2]±

1
2(ℏ𝑣𝐹 )2

√

[(𝐸−𝑉1)2−(𝐸−𝑉2)2]2+4𝑡⟂(𝐸−𝑉1)(𝐸−𝑉2).

(4)

These eigenvalues appear in pairs of the type (𝑞,−𝑞). In particular,
the pairs (𝑞1,−𝑞1) and (𝑞2,−𝑞2) correspond to the plus (+) and minus
(−) sign inside the square root, respectively. Here, it is important to
mention that 𝑞2 is pure imaginary, giving rise to evanescent modes.
Furthermore, the wavefunction amplitudes are given by

𝐅±
0𝑗 = (𝑎𝑗 , 𝑏

±
𝑗 , 𝑐𝑗 , 𝑑

±
𝑗 )

𝑇 , 𝑗 = 1, 2. (5)

where the components are

𝑎𝑗 = 𝑖
𝐸 − 𝑉1
ℏ𝑣𝐹

; (6)

1 Including the fact that there is homogeneity in the vertical axis, that is,
𝑞𝑦 = 𝑘𝑦.
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𝑏±𝑗 = 𝑞𝑦 ± 𝑖𝑞𝑗 ; (7)

𝑐𝑗 = 𝑖
𝑡⟂ℏ𝑣𝐹

[(𝐸 − 𝑉1)2 − (𝑞2𝑦 + 𝑞2𝑗 )(ℏ𝑣𝐹 )
2]; (8)

𝑑±𝑗 =
𝑡2⟂(𝐸 − 𝑉1) − (𝐸 − 𝑉2)[(𝐸 − 𝑉1)2 − (𝑞2𝑦 + 𝑞2𝑗 )(ℏ𝑣𝐹 )

2]

(𝑞𝑦 ± 𝑖𝑞𝑗 )𝑡⟂(ℏ𝑣𝐹 )2
. (9)

Then, the linear independent solutions can be expressed as

𝐅+
01𝑒

𝑖𝑞1𝑥,𝐅−
01𝑒

−𝑖𝑞1𝑥,𝐅+
02𝑒

𝑖𝑞2𝑥,𝐅−
02𝑒

−𝑖𝑞2𝑥. (10)

Any general solution can be expressed as a linear combination of these
linearly independent solutions. In matrix form this combination can be
written as

𝐅(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎1𝑒𝑖𝑞1𝑥 𝑎2𝑒𝑖𝑞2𝑥 𝑎1𝑒−𝑖𝑞1𝑥 𝑎2𝑒−𝑖𝑞2𝑥

𝑏+1 𝑒
𝑖𝑞1𝑥 𝑏+2 𝑒

𝑖𝑞2𝑥 𝑏−1 𝑒
−𝑖𝑞1𝑥 𝑏−2 𝑒

−𝑖𝑞2𝑥

𝑐1𝑒𝑖𝑞1𝑥 𝑐2𝑒𝑖𝑞2𝑥 𝑐1𝑒−𝑖𝑞1𝑥 𝑐2𝑒−𝑖𝑞2𝑥

𝑑+1 𝑒
𝑖𝑞1𝑥 𝑑+2 𝑒

𝑖𝑞2𝑥 𝑑−1 𝑒
−𝑖𝑞1𝑥 𝑑−2 𝑒

−𝑖𝑞2𝑥

⎞

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎝

𝛼+1
𝛼+2
𝛼−1
𝛼−2

⎞

⎟

⎟

⎟

⎟

⎠

. (11)

We want to use a method that is numerically stable, as the Hamil-
tonian does not involve second derivates, we cannot directly apply the
Sturm–Liouville formalism and the hybrid matrix method in its usual
form [31–33]. Instead, we will re-write our fundamental equations in
order to define an equivalent numerically stable hybrid matrix. Details
about the stability and reliability of the present hybrid matrix can be
found in the Supplementary Information. To find the corresponding
matrix for some homogeneous domain (in our case barriers or wells)
we express Eq. (11) in matrix blocks,

𝐅(𝑥) =
(

𝐅𝑢(𝑥)
𝐅𝑑 (𝑥)

)

=
(

𝐔+(𝑥) 𝐔−(𝑥)
𝐃+(𝑥) 𝐃−(𝑥)

)

⋅
(

𝛼+

𝛼−

)

. (12)

As 𝐅(𝑥) is a four-component vector, then 𝐅𝑢(𝑥) is a column vector
formed by the first two components and 𝐅𝑑 (𝑥) is a column vector
formed by the other two components. 𝐔±(𝑥) and 𝐃±(𝑥) are the 2 × 2
respective blocks of the 4 × 4 matrix in Eq. (11). Using the definition
of the hybrid matrix that relates the vectors 𝐅𝑢(𝑥) and 𝐅𝑑 (𝑥) at the ends
𝑥𝐿 and 𝑥𝑅 of the heterostructure, we can write the following equation,
(

𝐅𝑢(𝑥𝐿)
𝐅𝑑 (𝑥𝑅)

)

= 𝐇(𝑥𝑅, 𝑥𝐿) ⋅
(

𝐅𝑑 (𝑥𝐿)
𝐅𝑢(𝑥𝑅)

)

. (13)

Making use of Eqs. (12) and (13) we obtain that

𝐇(𝑥𝑅, 𝑥𝐿) =
(

𝐔+(𝑥𝐿) 𝐔−(𝑥𝐿)
𝐃+(𝑥𝑅) 𝐃−(𝑥𝑅)

)

⋅
(

𝐃+(𝑥𝐿) 𝐃−(𝑥𝐿)
𝐔+(𝑥𝑅) 𝐔−(𝑥𝑅)

)−1

, (14)

or, explicitly

𝐇(𝑥𝑅, 𝑥𝐿) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1𝑒𝑖𝑞1𝑥𝐿 𝑎2𝑒𝑖𝑞2𝑥𝐿 𝑎1𝑒−𝑖𝑞1𝑥𝐿 𝑎2𝑒−𝑖𝑞2𝑥𝐿

𝑏+1 𝑒
𝑖𝑞1𝑥𝐿 𝑏+2 𝑒

𝑖𝑞2𝑥𝐿 𝑏−1 𝑒
−𝑖𝑞1𝑥𝐿 𝑏−2 𝑒

−𝑖𝑞2𝑥𝐿

𝑐1𝑒𝑖𝑞1(𝑥𝑅) 𝑐2𝑒𝑖𝑞2(𝑥𝑅) 𝑐1𝑒−𝑖𝑞1(𝑥𝑅) 𝑐2𝑒−𝑖𝑞2(𝑥𝑅)

𝑑+1 𝑒
𝑖𝑞1(𝑥𝑅) 𝑑+2 𝑒

𝑖𝑞2(𝑥𝑅) 𝑑−1 𝑒
−𝑖𝑞1(𝑥𝑅) 𝑑−2 𝑒

−𝑖𝑞2(𝑥𝑅)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(15)

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐1𝑒𝑖𝑞1𝑥𝐿 𝑐2𝑒𝑖𝑞2𝑥𝐿 𝑐1𝑒−𝑖𝑞1𝑥𝐿 𝑐2𝑒−𝑖𝑞2𝑥𝐿

𝑑+1 𝑒
𝑖𝑞1𝑥𝐿 𝑑+2 𝑒

𝑖𝑞2𝑥𝐿 𝑑−1 𝑒
−𝑖𝑞1𝑥𝐿 𝑑−2 𝑒

−𝑖𝑞2𝑥𝐿

𝑎1𝑒𝑖𝑞1(𝑥𝑅) 𝑎2𝑒𝑖𝑞2(𝑥𝑅) 𝑎1𝑒−𝑖𝑞1(𝑥𝑅) 𝑎2𝑒−𝑖𝑞2(𝑥𝑅)

𝑏+1 𝑒
𝑖𝑞1(𝑥𝑅) 𝑏+2 𝑒

𝑖𝑞2(𝑥𝑅) 𝑏−1 𝑒
−𝑖𝑞1(𝑥𝑅) 𝑏−2 𝑒

−𝑖𝑞2(𝑥𝑅)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1

.

This is the hybrid matrix for a homogeneous domain. To obtain the
hybrid matrix of a heterostructure it is necessary to apply the compo-
sition rule of this matrix [31]. And with this we can easily calculate
the transmission and transport properties. First, to calculate the trans-
mittance, suppose that the left and right extremes of the structure have
coordinates 𝑥𝐿 and 𝑥𝑅. Then we will assume that a wave 𝐅+

01𝑒
𝑖𝑞1𝑥 hits

the left end and results in reflections 𝐅−
01𝑒

−𝑖𝑞1𝑥 and 𝐅−
02𝑒

−𝑖𝑞2𝑥 in that
domain, while at the right end we have only transmitted waves 𝐅+

01𝑒
𝑖𝑞1𝑥

and 𝐅+
02𝑒

𝑖𝑞2𝑥.

For the left and right semi-infinite regions we can write

(

𝐅𝑢(𝑥𝐿)

𝐅𝑑 (𝑥𝑅)

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1𝐿𝛼+1𝐿 + 𝑎1𝐿𝛼−1𝐿 + 𝑎2𝐿𝛼−2𝐿
𝑏+1𝐿𝛼

+
1𝐿 + 𝑏−1𝐿𝛼

−
1𝐿 + 𝑏−2𝐿𝛼

−
2𝐿

𝑐1𝑅𝛼+1𝑅 + 𝑐2𝑅𝛼+2𝑅
𝑑+1𝑅𝛼

+
1𝑅 + 𝑑+2𝑅𝛼

+
2𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (16)

and

(

𝐅𝑑 (𝑥𝐿)

𝐅𝑢(𝑥𝑅)

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐1𝐿𝛼+1𝐿 + 𝑐1𝐿𝛼−1𝐿 + 𝑐2𝐿𝛼−2𝐿
𝑑+1𝐿𝛼

+
1𝐿 + 𝑑−1𝐿𝛼

−
1𝐿 + 𝑑−2𝐿𝛼

−
2𝐿

𝑎1𝑅𝛼+1𝑅 + 𝑎2𝑅𝛼+2𝑅
𝑏+1𝑅𝛼

+
1𝑅 + 𝑏+2𝑅𝛼

+
2𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (17)

For these equations we are considering reduced bases at 𝑥𝐿 and 𝑥𝑅,
that is, we are changing 𝑥 to 𝑥 − 𝑥𝐿 and 𝑥 − 𝑥𝑅, respectively. The
subscripts 𝐿 and 𝑅 indicate the external domain where the coefficients
and parameters are calculated. We are also discarding the coefficients
𝛼−1𝑅 and 𝛼−2𝑅 in the right domain because there is no reflected wave and
as 𝑞2 is pure imaginary a diverging wave is not physically acceptable.
For the left domain we set 𝛼+2𝐿 = 0 because it represents a diverging
wave. We can also define the reflection and transmission amplitudes as
𝑟1 = 𝛼−1𝐿∕𝛼

+
1𝐿, 𝑟2 = 𝛼−2𝐿∕𝛼

+
1𝐿, 𝑡1 = 𝛼+1𝑅∕𝛼

+
1𝐿 and 𝑡2 = 𝛼+2𝑅∕𝛼

+
1𝐿. With this,

Eq. (13) takes the form

𝐌1 +𝐌2 ⋅

⎛

⎜

⎜

⎜

⎜

⎝

𝑟1
𝑟2
𝑡1
𝑡2

⎞

⎟

⎟

⎟

⎟

⎠

= 𝐇(𝑥𝑅, 𝑥𝐿) ⋅𝐌3 +𝐇(𝑥𝑅, 𝑥𝐿) ⋅𝐌4 ⋅

⎛

⎜

⎜

⎜

⎜

⎝

𝑟1
𝑟2
𝑡1
𝑡2

⎞

⎟

⎟

⎟

⎟

⎠

, (18)

where the matrices 𝐌1,𝐌2,𝐌3 and 𝐌4 are given as

𝐌1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1𝐿
𝑏+1𝐿
0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐌2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1𝐿 𝑎2𝐿 0 0

𝑏−1𝐿 𝑏−2𝐿 0 0

0 0 𝑐1𝑅 𝑐2𝑅
0 0 𝑑+1𝑅 𝑐+2𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (19)

𝐌3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐1𝐿
𝑑+1𝐿
0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; 𝐌4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐1𝐿 𝑐2𝐿 0 0

𝑑−1𝐿 𝑑−2𝐿 0 0

0 0 𝑎1𝑅 𝑎2𝑅
0 0 𝑏+1𝑅 𝑏+2𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (20)

Finally, we get that

⎛

⎜

⎜

⎜

⎜

⎝

𝑟1
𝑟2
𝑡1
𝑡2

⎞

⎟

⎟

⎟

⎟

⎠

=
[

𝐌2 −𝐇(𝑥𝑅, 𝑥𝐿) ⋅𝐌4
]−1

⋅
[

𝐇(𝑥𝑅, 𝑥𝐿) ⋅𝐌3 −𝐌1
]

. (21)

The transmission probability is given as [23,25]

𝑇 =
𝑗+𝑥,1𝑅
𝑗+𝑥,1𝐿

, (22)

where 𝑗+𝑥,1𝑅 represents the transmitted probability current density and
𝑗+𝑥,1𝐿 the incident one. As the left and right semi-infinite regions are the
same Eq. (22) can be reduced to

𝑇 =
|

|

|

|

|

𝛼+1𝑅
𝛼+1𝐿

|

|

|

|

|

2

, (23)

with 𝛼+1𝑅/𝛼+1𝐿 the amplitude of the outgoing/incoming wave of the
right/left semi-infinite region. So, according to the definition of 𝑡1, then
𝑇 = |𝑡1|

2 [34].
To calculate the transport properties, particularly the linear-regime

conductance, we will use the Landauer–Büttiker formalism [35]. Within
this formalism the conductance comes as

𝐺
𝐺0

= ∫

𝜋
2

− 𝜋
2

𝑇 (𝐸𝐹 , 𝜃) cos 𝜃𝑑𝜃, (24)
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Fig. 1. (a) Schematic representation of the possible device for bilayer graphene barrier
structures. The graphene layers are placed between dielectric substrates, like SiO2 and
Al2O3, that in conjunction with back and top gates can shift the energy band structure,
open a band gap and even dope the material [8,9]. (b) Potential energy diagram for
double barriers along the 𝑥-coordinate (propagation direction). In this case the potential
energy in the top (𝑉1) and the bottom (𝑉2) layers is not the same, giving rise to a band
gap 𝐸𝑔 = 𝑉1 − 𝑉2, red-shaded area. It is also considered that 𝑉1 and 𝑉2 are below the
interlayer coupling energy 𝑡⟂ such that the bands can be assumed as parabolic. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

where 𝐺0 =
2𝑒2𝐿𝑦𝐸𝐹
ℎ2𝑣𝐹

is the fundamental conductance factor.

3. Results and discussions

In Fig. 1a a schematic representation of the system that we are
interested in is shown. It consists in two graphene layers sandwiched
between dielectric slabs, such as SiO2 and Al2O3, and top and back
gates. With this device configuration it is possible to shift the bilayer
graphene band structure, energetically speaking, open a bandgap on it
and even dope the material [8,9]. Then, in principle, with an arrange-
ment of top gates we can obtain single and double barrier potentials.
In particular, we are interested in single and double barrier potentials
in which the graphene layers in the top gated regions have different
potential energy, such that a bandgap is present in the structure, 𝐸𝑔 =
𝑉1 − 𝑉2, red-shaded area in Fig. 1b. It is also assumed that 𝑉1 and 𝑉2
are below the interlayer coupling energy 𝑡⟂, hence the energy bands
can be considered as parabolic.

The aim of the present work is to analyze to what extent Fano
resonances in single barriers and hybrid Fano resonances in double
barriers [26] are affected by the presence of a bandgap. So, we will
show representative cases in order to unveil the impact of the bandgap
on the transmittance and conductance curves for the mentioned barrier
structures.

3.1. Single barrier structures

Firstly, we present the results for single barriers. It is well known
that Fano resonances arise in single barriers at nearly normal incidence
and that they depend strongly on the angle of incidence, the width
and the height of the barrier [25,26]. In Fig. 2 we show how a Fano
resonance in single barriers is affected by the bandgap opening. As
we can notice a well-defined Fano resonance presented at 𝜃 = 5◦,
solid-black curve in (a), is modified once the bandgap is opened. In

this case the barrier width is 10 nm, 𝑉1 = 50 meV and 𝑉2 is reduced
systematically from 50 meV to 0 meV. For a bandgap of 𝐸𝑔 = 𝑉1−𝑉2 =
5 meV the Fano resonance amplitude is reduced and eventually the
transmittance profile becomes an anti-resonance for 𝐸𝑔 = 10 meV.
By increasing further the bandgap (𝐸𝑔 = 15 meV) an inverted Fano
resonance arises, with the maximum at lower energy (left) and the
minimum at higher energy (right), see the dotted–dashed-blue curve
in (a). For larger bandgaps the inverted Fano resonance is deformed to
such point that it is difficult to consider it as the typical asymmetrical
line-shape of the Fano profile, see Fig. 2b. We can also see that in
effective terms the Fano resonance is shifted to lower energies as the
bandgap increases, consequently the discrete state involved. Similar
results are obtained if we fixed 𝑉2 at 50 meV and varied 𝑉1 from 50 meV
to 100 meV. However, in this case the Fano resonance, in addition to
the deformation, is shifted to higher energies (see Fig. 3), which means
that the associated discrete state is also shifted to higher energies. In
the light of these results it seems that at first instance the bandgap
opening is not beneficial to the Fano resonances. However, as we will
see in short, the bandgap opening modifies the chiral characteristics
of the charge carriers in the barrier region [36], resulting in a more
effective chiral matching between states inside and outside the barrier
and consequently in an enhancement of the Fano resonance response.
In Fig. 4 we show the results of the transmittance at normal incidence
(𝜃 = 0◦) for various values of the bandgap. As it is well known, in the
gapless case there is no coupling between the states inside and outside
the barrier and consequently the transmittance does not present any
Fano profile, see the solid-black curve in Fig. 4a. As we can notice,
once the bandgap is opened a well-defined inverted Fano resonance
arises at about 20 meV, dotted-red curve in Fig. 4a. For a bandgap
of 20 meV the Fano resonance is shifted to lower energies and the
energy distance between the maximum and the minimum is increased,
dashed-green curve in Fig. 4a. By further increasing the bandgap, the
Fano resonance is progressively moved to lower energies as well as
deformed, see Fig. 4b. As in the case of oblique incidence, after some
specific bandgap the transmittance curve is deformed to such degree
that cannot be considered as the typical asymmetrical line-shape of
Fano resonances. Similar results are obtained if we fixed 𝑉2 at 50 meV
and varied 𝑉1 from 50 meV to 100 meV in steps of 10 meV. However, in
this case the Fano resonance is deformed and shifted to higher energies
as the bandgap increases, see Fig. 5.

Now we will analyze to what extent the Fano resonances presented
under bandgap opening are affected by the angle of incidence. This is
quite relevant because at the end the conductance is the sum over all
transmission channels (angles) and if the Fano resonances are mani-
fested in the conductance will depend on its characteristics with the
angle of incidence. In Fig. 6 we show the evolution of a Fano resonance
as a function of the angle of incidence for bilayer graphene single
barriers under a bandgap opening of 𝐸𝑔 = 15 meV. As we can notice
the amplitude of the Fano resonance induced by the bandgap opening is
reduced when the angle of incidence increases. In particular, the peak
at low energies is systematically diminished and disappears for large
angles, see Fig. 6b. Despite the destruction of the Fano profile with the
angle of incidence, it is quite relevant that the main contribution to the
transport properties will come from the Fano resonances. This opens the
possibility of see directly the hallmark of the Fano resonances on the
conductance without the need of reducing the angular range. A similar
behavior occurs if we consider 𝑉1 = 65 meV and 𝑉2 = 50 meV, that is,
the same bandgap as in Fig. 6, 𝐸𝑔 = 15 meV. However, in this case the
Fano resonance is shifted to higher energies and progressively deformed
as the angle of incidence increases (Fig. 7a), losing the asymmetrical
line-shape for large angles (Fig. 7b).

Regarding the transport properties turns out that the bandgap open-
ing rather than be prejudicial for the possible detection of the Fano
resonances in the conductance curves it is beneficial. For instance,
in the gapless case it is necessary to reduce the angular range in
order to see the hallmark of the Fano resonances on the conductance,
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Fig. 2. Bandgap opening effect over a well-defined Fano resonance. An asymmetrical line-shape is presented in gapless bilayer graphene single barriers at oblique incidence,
solid-black curve in (a). Once the bandgap is opened the Fano resonance is modified, eventually becoming an anti-resonance as well as an inverted Fano resonance, dotted-red,
dashed-green and dotted–dashed-blue lines in (a), respectively. After some critical bandgap the transmittance profile is deformed and cannot be considered as a Fano profile strictly
speaking, see curves in (b). Here, the barrier width is 10 nm and the angle of incidence is 𝜃 = 5◦.

Fig. 3. The same as Fig. 2, but here 𝑉2 is fixed at 50 meV, while 𝑉1 is varied from 50 meV to 100 meV.

Fig. 4. Influence of the bandgap over the transmission probability at normal incidence, 𝜃 = 0◦. In (a) the bandgap 𝐸𝑔 takes values of 0, 10 and 20 meV, solid-black, dotted-red
and dashed-blue lines respectively. In (b) the values for 𝐸𝑔 are 30, 40 and 50 meV, solid-black, dotted-red and dashed-blue lines, respectively. As in Fig. 2, the barrier width is
10 nm, 𝑉1 is fixed at 50 meV and 𝑉2 is varied from 50 meV to 0 meV.

Fig. 5. The same as Fig. 4, but here 𝑉2 is fixed to 50 meV and 𝑉1 is varied from 50 meV to 100 meV in steps of 10 meV.
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Fig. 6. Evolution of Fano resonances as a function of the angle of incidence for bilayer graphene single barriers under a bandgap opening of 𝐸𝑔 = 15 meV. In (a) we are considering
angles of incidence near to normal incidence, while in (b) the angles are far from normal incidence. Here, the barrier width is 10 nm, 𝑉1 = 50 meV and 𝑉2 = 35 meV, which
results in the above mentioned bandgap, 𝐸𝑔 = 𝑉1 − 𝑉2 = 15 meV.

Fig. 7. The same as Fig. 6, however here 𝑉1 = 65 meV and 𝑉2 = 50 meV.

compare the solid-black curves in Fig. 8. However, once the bandgap is
opened and it is modulated appropriately the conductance will manifest
directly the asymmetrical line-shape typical of the Fano profile without
the need of reducing the angular range, see the long-dashed-red and
short-dashed-green curves in Fig. 8a and b. We obtain a similar trend
if we keep fixed 𝑉1 and varied 𝑉2 than if we fixed 𝑉2 and varied
𝑉1. However, in the former case the conductance Fano-like profile is
shifted to lower energies, while in the latter the profile is shifted to
higher energies. In addition, in the former the Fano-like profile is better
defined because the main contribution comes from the newly Fano
resonances activated by the bandgap opening, see Fig. 6. In the case of
the dotted–dashed-blue curves it is difficult to relate them to the Fano
resonances because by reducing the angular range the resulting profiles
are far from the typical asymmetrical line-shape of Fano resonances,
see Fig. 8c and d. We consider that this results are quite relevant
because they open the possibility of test the exotic phenomenon of Fano
resonances in bilayer graphene structures without the need of angular
discrimination. Although angular transport measurements in graphene
are nowadays a reality [37,38], it is always welcomed (better) to have a
direct measurement of the conductance without the possible intricacies
associated to the angular resolution. It is also important to remark that
the signatures of the Fano resonances are clearly identifiable in the
transport properties with the conductance Fano-like profile and that the
energy range at which it is taking place (10 meV) is totally reachable
from the experimental standpoint. In fact, the conductance Fano-like
profile is more evident than the hallmark in the conductance reported
for cloaked states [19].

3.2. Double barrier structures

Regarding gapless bilayer graphene double barriers it is known
that the coupling between Fano resonances and the natural resonances
of the well region results in the so-called hybrid resonances [26], in
analogy with the resonances that arise in the optical phenomena [39].

The main characteristic of these resonances is a total reflection region,
pronounced dip, surrounded by transmission maxima. It is also impor-
tant to mention that in the gapless case this resonance is only presented
at oblique incidence and small angles of incidence. In Fig. 9a we can
see how a well-defined hybrid resonance at 𝜃 = 5◦ is affected by the
bandgap opening. In this case 𝑉1 has been fixed to 50 meV and 𝑉2
was varied from 50 meV to 20 meV in steps of 10 meV. The widths
of the barriers and the well are the same and equal to 10 nm. As we
can notice once the bandgap is opened (𝐸𝑔 = 10 meV) the left peak
of the hybrid resonances is diminished and shifted to lower energies.
By systematically increasing the bandgap the hybrid resonance continu-
ously lose its hybrid profile, that is, the left peak shifts to lower energies
and after diminishing starts to increase until it merges with another
transmission maximum forming a double resonance. On the contrary,
the right peak keeps its energy location and increases as the bandgap
gets larger. So, at first instance the bandgap opening is not beneficial
for hybrid resonance because it deforms and practically destroys the
hybrid profile. However, as in the case of single barriers, the bandgap
opening activates another transmission channels that sustain hybrid
resonances. For instance, hybrid resonances are presented at normal
incidence under bandgap opening. As we can see in Fig. 9b for the
gapless case (solid-black curve) the invisibility of discrete states forbids
the formation of the Fano resonances and consequently the emergence
of hybrid resonances. So, what we see at normal incidence is essentially
a resonance that come from the quantum well region, located at about
25 meV. Once the bandgap is opened the invisibility is broken and the
effective coupling between Fano and quantum well resonances gives
rise to the hybrid profile, see the long-dashed-red curve in Fig. 9b.
By further increasing the bandgap the hybrid profile is deformed and
practically lost, in similar fashion as the case of oblique incidence
Fig. 9a. If now we keep fixed 𝑉2 and varied 𝑉1 from 50 meV to 80
meV in steps of 10 meV the results are not necessarily the same as in
the preceding case. For instance, in the oblique case (𝜃 = 5◦) when the
bandgap is small the hybrid resonance is moved to higher energies and
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Fig. 8. Conductance versus the Fermi energy for different values of the bandgap. In (a) we have fixed 𝑉1 and varied 𝑉2, while in (b) 𝑉2 is fixed and 𝑉1 is varied. (c) and (d)
are angular reductions of (a) and (b) respectively, that is, the integral for the conductance has been computed from −𝜋∕12 to 𝜋∕12. As in the preceding figures the width of the
barrier is 10 nm.

diminished, see the long-dashed-red curve in Fig. 10a. In addition, for
a bandgap of 20 meV (𝑉1 = 70 meV) the resonances is so deformed
that it is difficult to consider it as an hybrid resonance. In particular,
we have a depressed maximum with minima and even smaller maxima
at the sides. For a bandgap of 30 meV (𝑉1 = 80 meV) the transmittance
profile is so deformed that is far from the typical profile for hybrid
resonances. Essentially we have two peaks, one at 25 meV and the
other at 40 meV. In the case of normal incidence we can see that the
hybrid resonance is more pronounced and it is presented with a double
resonance at the low-energy side, see long-dashed-red curve in Fig. 10b.
Here, it is important to remark that the resonance at lowest energy has
a Fano-like profile. So, when we increase the bandgap to 20 meV the
double peaks become an hybrid resonance with highly reduced peaks.
For a bandgap of 30 meV the transmittance has changed hugely such
that it is not possible to consider it as the typical hybrid profile, see
the dotted–dashed-blue curve in Fig. 10b. At the light of these results
it seems better for the possible detection of hybrid resonances as well
as the possible use of them in practical devices to keep fixed 𝑉1 and
varied 𝑉2.

Now it is turn to analyze the impact of the angle of incidence over
hybrid resonances in gapped double barriers. This parameter is quite
relevant because it is directly related to the transport properties. In
Fig. 11 we show the evolution of hybrid resonances with the angle of
incidence. We have considered gapped double barriers with 𝑉1 = 50
meV and 𝑉2 = 40 meV and 𝑉1 = 60 meV and 𝑉2 = 50 meV, Fig. 11a and
b, respectively. The widths of the barriers and the well are the same as
in the preceding figures, namely: 𝑑𝐵1 = 𝑑𝐵2 = 𝑑𝑊 = 10 nm. In Fig. 11a
we see a well-defined hybrid resonance at normal incidence (solid-black
curve) that when the angle of incidence is increased it is systematically
diminished, especially the peak at low energy, compare the solid-black
and long-dashed-red curves. As in the case of Fano resonances in single
barriers after 15◦ the hybrid profile is totally lost, see the dotted–
dashed-blue curve in Fig. 11a. One aspect that is important to highlight
here it is that despite the deformation and destruction of the hybrid
profile with the angle of incidence there are no other contributions in
the energy window at which the hybrid resonance is presented. So, we
can expect that the hybrid profile be also manifested in the conductance
curves. As similar evolution for the hybrid resonances is obtained in
Fig. 11b. However in this case the peaks of the hybrid resonances are
not as prominent as in Fig. 11a. So, it is expected that the signatures of

hybrid resonances on the conductance not be as evident and prominent
as in the case of Fig. 11a.

Regarding the transport properties, in Fig. 12 we show the con-
ductance as a function of the Fermi energy for different values of the
bandgap. In Fig. 12a we have fixed 𝑉1 at 50 meV and varied 𝑉2 from
50 meV to 20 meV in steps of 10 meV, while in Fig. 12b 𝑉2 is fixed
and 𝑉1 is varied from 50 meV to 80 meV in steps of 10 meV. As
we can see in Fig. 12a a hybrid profile arise in the conductance for
gapless barriers (solid-black curve) at about 27 meV. One of the main
characteristics of this profile is its acuteness, with a peak at the left
side and a pronounced rise at the right side. The effective with of the
hybrid resonance is less than 5 meV, which could be a difficulty from
the experimental standpoint. By opening the bandgap the conductance
hybrid profile is shifted to lower energies and the effective width of
it increases as well, see the long-dashed-red curve in Fig. 12a. This
effective broadening of the profile is welcomed because it could help
to resolve and detect easily the contribution of hybrid resonance in
electron transport measurements. We can also see two other main
contribution to the conductance, an acute peak at intermediate energy
(15 meV) and a broad peak at low energy (10 meV). The intermediate
acute peak come from the intricate deformation of the hybrid resonance
as the angle of incidence is increased, while the broad peak at low
energy is related to Breit–Wigner resonances, which are dominant
in that energy region as the angle of incidence increases. For larger
bandgaps the conductance hybrid profile is systematically deformed
and eventually lost, see for instance the dotted–dashed-blue curve in
Fig. 12a. In the case of 𝑉1 = 60 meV and 𝑉2 = 50 meV (Fig. 12b)
we obtain similar results. However, in this case the hybrid profile is
shifted to higher energies and the peaks are not as prominent as in
Fig. 12a. So, in trying to detect the contribution of hybrid resonances
on the transport properties is quite relevant to tune appropriately the
bandgap.

Now we study the intrinsic structural asymmetry of double barrier
structures. In particular, we analyze the impact on the transmission
and transport properties of the asymmetry associated to the width of
the barriers, the thickness of the well and the bandgap in the barrier
regions. In Fig. 13 we show the results of the asymmetry related to the
well width. We have systematically reduced the well width from 10 nm
to 2.5 nm in steps of 2.5 nm. The other double barrier parameters
are fixed to 𝑑𝐵1 = 𝑑𝐵2 = 10 nm, 𝑉1 = 50 meV and 𝑉2 = 40 meV.
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Fig. 9. Bandgap effect over hybrid resonances in double barrier structures. (a) Evolution of a well-defined hybrid resonance at oblique incidence (𝜃 = 5◦) for different values of
the bandgap. (b) The same as (a) but for normal incidence (𝜃 = 0◦). Here, 𝑉1 is fixed and 𝑉2 is varied. The widths of the barriers and the well is the same 𝑑𝐵1 = 𝑑𝐵2 = 𝑑𝑊 = 10
nm.

Fig. 10. The same as Fig. 9, but here 𝑉2 is fixed and 𝑉1 is varied as shown.

Fig. 11. Influence of the angle of incidence over hybrid resonances in gapped double barrier structures. The bandgap considered is 𝐸𝑔 = 10 meV. In (a) 𝑉2 is diminished 10 meV
respect to the reference (gapless) case (50 meV), while in (b) 𝑉1 is increased 10 meV with respect to the reference case.

Fig. 12. Conductance versus the Fermi energy in double barrier structures for different values of the bandgap. In (a) we have fixed 𝑉1 and varied 𝑉2, while in (b) 𝑉2 is fixed and
𝑉1 is varied. The solid-black, long-dashed-red, short-dashed-green and dotted–dashed curves correspond to the gapless case, a bandgap of 10, 20 and 30 meV, respectively. The
widths of the barriers and well are the same 𝑑𝐵1 = 𝑑𝐵2 = 𝑑𝑊 = 10 nm.
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The solid-black and dashed-red curves correspond to normal incidence
(𝜃 = 0◦) and oblique incidence (𝜃 = 5◦), respectively. In the symmetric
case (Fig. 13a) we can see a well-defined hybrid resonance at normal
incidence promoted by the bandgap opening 𝐸𝑔 = 𝑉1 − 𝑉2 = 10 meV.
At oblique incidence, the low-energy peak of the hybrid resonance is
diminished. We can also see an acute peak at low energy for both
normal and oblique incidence. Once the asymmetry of the well width
is incorporated, the hybrid resonance is distorted. In particular, for
normal incidence the low- and high-energy peaks of the hybrid reso-
nance separate systematically each other as the well width decreases,
being the low-energy peak narrower and the high-energy peak broader,
see the solid-black curves in Fig. 13b, c and d. We also notice an
effective shift of the peaks of the hybrid resonance to high energies
as well as a shift to low energies of the acute peak originally located
at about 0.015 eV. At oblique incidence we see a similar dynamic for
the hybrid resonance. However, the low-energy peak is systematically
reduced as the well width increases. Likewise, the acute peak close to
0.015 eV diminishes and practically disappears after 𝑑𝑊 = 5.0 nm. This
asymmetry allows us to see that the hybrid resonance is the result of
the interplay between a resonance of the barriers and a resonance of
the well. In specific, the resonance of the well region moves to higher
energies as the well width grows, deteriorating the coupling that gives
rise to the hybrid resonance. In the limit of zero well width we will
have the transmission properties of a single barrier of a width of 20 nm.
Quite different results are obtained when we increase the well width
rather than reduce it, see Fig. 14. By increasing the well width the res-
onances associated to the well region move to lower energies, resulting
in a more intricate coupling with the resonances of the barriers. For
instance, for 𝑑𝑊 = 12.5 nm, at normal incidence, the hybrid resonance
has transformed in two Fano resonances with one broad resonance in
between them. For 𝑑𝑊 = 15.0 nm, the Fano resonance in the low-
energy side disappeared and the one in the high-energy side is reverted.
In the case of 𝑑𝑊 = 17.5 nm, the broad resonance shifts to the low-
energy side and two Fano resonances appear at high energies. Similar
results are obtained for oblique incidence, however the peaks related
to the Fano resonances are not as prominent as in the case of normal
incidence, compare the solid-black and dashed-red curves in Fig. 14b,
c and d.

Regarding the transport properties, Fig. 15 shows the impact of the
asymmetry of the well width on the conductance. Fig. 15a corresponds
to the double barriers of Fig. 13, while Fig. 15b to the double barriers
of Fig. 14. As we can notice, once the asymmetry of the well width
is incorporated, the characteristics of the hybrid resonances are no
longer visible in the conductance. In particular, when the well width
is decreased (Fig. 15a) the conductance presents two peaks, being
the low-energy peak dominant. The energy location of these peaks
coincides with the energy of the resonances associated to the barriers,
see Fig. 13. On the contrary, when the well width is increased (Fig. 15b)
the conductance presents multiple peaks due to the intricate interplay
between the resonances of the barriers and the well.

Now it is turn to analyze the impact of having barriers of different
width. In this case, we have fixed 𝑑𝐵1 to 10 nm and varied 𝑑𝐵2.
The well width and the potentials are also fixed to 𝑑𝑊 = 10 nm,
𝑉1 = 50 meV and 𝑉2 = 40 meV. In Figs. 16 and 17 we show the results
for the transmission when 𝑑𝐵2 is reduced and increased, respectively.
In both figures, the solid-black and dashed-red curves correspond to
transmission at normal (𝜃 = 0◦) and oblique incidence (𝜃 = 5◦),
respectively. As we can notice in Fig. 16, when the second barrier is
reduced the hybrid resonance profile is not lost at all as in the case of
reducing the well width (Fig. 13). For instance, at normal incidence, the
well-defined hybrid resonance profile of the symmetric case (Fig. 16a)
is systematically transformed as 𝑑𝐵2 decreases till it emerges as a Fano
profile for 𝑑𝐵2 = 2.5 nm. In particular, we can see that the high-
energy peak of the hybrid resonance diminishes as 𝑑𝐵2 is reduced.
For oblique incidence we have a similar dynamic, however, the hybrid
resonance transforms systematically till it adopts an anti-resonance

profile for 𝑑𝐵2 = 2.5 nm. In the limit of zero 𝑑𝐵2 we will have the
transmission properties of a single barrier with a thickness of 10 nm.
When we increase 𝑑𝐵2, the interplay between the resonances of the
barriers and the well is more intricate. In fact, the low-energy peak of
the hybrid resonance is practically unaffected when 𝑑𝐵2 grows. On the
contrary, the high-energy peak of the hybrid resonance and the narrow
resonance in the low-energy side are greatly affected, becoming Fano-
like resonances for large 𝑑𝐵2. This happens for normal and oblique
incidence, however, for the latter, the peaks are not as prominent as
for the former. All these transmission characteristics will be reflected
in great extent in the transport properties.

In Fig. 18 we present the transport properties of the symmetry
associated to 𝑑𝐵2. When we reduce 𝑑𝐵2 (Fig. 18a) the typical conduc-
tance curve of the symmetric case (solid-black curve) is systematically
modified till it looks like the conductance curve of a single barrier. The
first effect of this type of asymmetry is the disappearance of the acute
conductance peak located at about 0.015 eV, compare solid-black and
dashed-red curves in Fig. 18a. Secondly, the broad peaks at 0.01 eV
and 0.02 eV shift to lower energy and get narrow, being the former
predominant (higher) than the latter. Furthermore, as 𝑑𝐵2 approaches
to zero the high and acute peak in the low-energy side will disappear
and the conductance curve will be of a single barrier, see Fig. 8a. On
the other hand, the conductance curves are quite different when we
increase 𝑑𝐵2. For instance, the conductance curve of the symmetric case
is barely affected with a small increase in 𝑑𝐵2, see the long-dashed-red
curve in Fig. 18b. In fact, the whole curve is shifted to higher energies,
but the envelope is preserved. For 𝑑𝐵2 = 15 nm we see an additional
shift of the curve to higher energies as well as a broad peak in the high-
energy side. For 𝑑𝐵2 = 17.5 nm, two extra peaks are presented in the
conductance, in addition to the systematic shift of the curve, a small one
about 0.03 eV and a huge one close to zero, see the dotted–dashed-blue
curve in Fig. 18b.

The last asymmetry we will address is the one that is presented
when the barriers have different bandgaps. In Fig. 19 we show the
impact of this type of asymmetry on the transmission properties. In
this case, we have fixed the bandgap of the first barrier, 𝐸𝐵1

𝑔 = 10
meV, and varied the bandgap of the second one, 𝐸𝐵2

𝑔 . The width of
the barriers and well is the same 𝑑𝐵1 = 𝑑𝐵2 = 𝑑𝑊 = 10 nm. As in
the preceding asymmetries, we have considered normal and oblique
incidence, solid-black and dashed-red curves, respectively. As we can
see this asymmetry is quite peculiar. The main effect of it is to reduce
or increase the distance between the peaks of the hybrid resonance.
For instance, when 𝐸𝐵2

𝑔 = 0 meV the distance between the peaks is
diminished, resulting in a narrower hybrid profile, see Fig. 19b. On the
contrary, when 𝐸𝐵2

𝑔 gets larger the peaks separate each other, resulting
in a broader hybrid resonance, see Fig. 19c and d. This happens for both
normal and oblique incidence, with small differences in the intensities
of the peaks. These characteristics are also manifested in the transport
properties (Fig. 20). In fact, the conductance presents a narrow or broad
hybrid-like profile depending if 𝐸𝐵2

𝑔 is reduced or increased.
As we have corroborated, the intrinsic asymmetries of double bar-

rier structures can be used as tuning parameters to modulate the
transmission and transport properties. In addition, the asymmetries can
helps us to unveil the origin of the different resonances and peaks
presented in the transmission and conductance curves.

4. Conclusions

In summary, we address the exotic phenomenon of Fano resonances
in bilayer graphene single and double barrier structures. In particular,
we study how these resonances are modified by bandgap opening in the
band structure of bilayer graphene. A four-band hamiltonian has been
used to describe electrons as well as to incorporate the mentioned band
structure modifications. The hybrid matrix method and the Landauer–
Büttiker formalism were implemented to obtain the transmittance and
the conductance, respectively. We find that bandgap opening promotes
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Fig. 13. Impact of the asymmetry of the well width on the transmission of double barrier structures. The well widths considered are (a) 10 nm, (b) 7.5 nm, (c) 5.0 nm and (d)
2.5 nm. The other double barrier parameters are fixed to 𝑑𝐵1 = 𝑑𝐵2 = 10 nm, 𝑉1 = 50 meV and 𝑉2 = 40 meV. The solid-black curves correspond to normal incidence 𝜃 = 0◦, while
the dashed-red ones to 𝜃 = 5◦.

Fig. 14. The same as Fig. 13, but here the well widths are (a) 10 nm, (b) 12.5 nm, (c) 15.0 nm and (d) 17.5 nm.

Fig. 15. Impact of the asymmetry of the well width on the conductance of double barrier structures. (a) The well width is systematically reduced from 10 nm to 2.5 nm in steps
of 2.5 nm. (b) The well width is systematically increased from 10 nm to 17.5 nm in steps of 2.5 nm. The widths and heights of the barriers are the same as in Figs. 13 and 14.
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Fig. 16. Impact of the asymmetry associated to the width of the barriers on the transmission of double barrier structures. The widths considered for the second barrier are (a)
10 nm, (b) 7.5 nm, (c) 5.0 nm and (d) 2.5 nm. The other double barrier parameters are fixed to 𝑑𝐵1 = 𝑑𝑊 = 10 nm, 𝑉1 = 50 meV and 𝑉2 = 40 meV. The solid-black curves
correspond to normal incidence 𝜃 = 0◦, while the dashed-red ones to 𝜃 = 5◦.

Fig. 17. The same as Fig. 16, but here the widths of the second barrier are (a) 10 nm, (b) 12.5 nm, (c) 15.0 nm and (d) 17.5 nm.

the coupling between extended and discrete states, resulting in Fano
resonances at transmission channels that were not activated in the
gapless case. For instance, we find that with a small bandgap the
Fano line-shape is presented in the transmittance at normal incidence
for single barrier structures. In the case of double barriers we also
find hybrid Fano resonances at normal incidence. The improvement of
the chiral matching between extended and discrete states induced by
the bandgap opening results in an effective enhancement of the Fano
response on the transport properties. In particular, we can identify the
Fano contribution in the conductance without the need of reducing
the angular range. In the case of single barriers a Fano line-shape is
presented in the conductance, while for double barriers a hybrid profile
can be identified in the conductance straightforwardly. So, bandgap
opening far from disrupts and destroys the Fano response promotes

it and can be used as a tuning parameter to corroborate the exotic
phenomenon of Fano resonances in bilayer graphene barrier structures.
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Fig. 18. Impact of the asymmetry related to the width of the barriers on the conductance of double barrier structures. (a) The width of the second barrier is systematically reduced
from 10 nm to 2.5 nm in steps of 2.5 nm. (b) The width of the second barrier is systematically increased from 10 nm to 17.5 nm in steps of 2.5 nm. The other double barrier
parameters are the same as in Figs. 16 and 17.

Fig. 19. Impact of the asymmetry associated to barriers with different bandgap on the transmission of double barrier structures. The bandgap of the first barrier 𝐸𝐵1
𝑔 = 𝑉 𝐵1

1 − 𝑉 𝐵1
2

is fixed to 10 meV, while the one of the second barrier 𝐸𝐵2
𝑔 = 𝑉 𝐵2

1 − 𝑉 𝐵2
2 is varied: (a) 10 meV, (b) 0 meV, (c) 20 meV and (d) 30 meV. The widths of the barriers and well are

the same 𝑑𝐵1 = 𝑑𝐵2 = 𝑑𝑊 = 10 nm and remain fixed. The solid-black and dashed-red curves correspond to normal (𝜃 = 0◦) and oblique (𝜃 = 5◦) incidence, respectively.

Fig. 20. The same as in Fig. 19, but for the conductance.
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