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Non-conventional graphene 
superlattices as electron band-pass 
filters
A. sánchez-Arellano1, J. Madrigal-Melchor1,2 & I. Rodríguez-Vargas1,2

Electron transmission through different non-conventional (non-uniform barrier height) gated and 
gapped graphene superlattices (GSLs) is studied. Linear, Gaussian, Lorentzian and Pöschl-Teller 
superlattice potential profiles have been assessed. A relativistic description of electrons in graphene as 
well as the transfer matrix method have been used to obtain the transmission properties. We find that 
it is not possible to have perfect or nearly perfect pass bands in gated GSLs. Regardless of the potential 
profile and the number of barriers there are remanent oscillations in the transmission bands. On the 
contrary, nearly perfect pass bands are obtained for gapped GSLs. The Gaussian profile is the best 
option when the number of barriers is reduced, and there is practically no difference among the profiles 
for large number of barriers. We also find that both gated and gapped GSLs can work as omnidirectional 
band-pass filters. In the case of gated Gaussian GSLs the omnidirectional range goes from −50° to 50° 
with an energy bandwidth of 55 meV, while for gapped Gaussian GSLs the range goes from −80° to 
80° with a bandwidth of 40 meV. Here, it is important that the energy range does not include remanent 
oscillations. On the light of these results, the hole states inside the barriers of gated GSLs are not 
beneficial for band-pass filtering. So, the flatness of the pass bands is determined by the superlattice 
potential profile and the chiral nature of the charge carriers in graphene. Moreover, the width and the 
number of electron pass bands can be modulated through the superlattice structural parameters. We 
consider that our findings can be useful to design electron filters based on non-conventional GSLs.

Semiconductor superlattices are essential as injector and/or active region in several applications. In quantum cas-
cade lasers1,2, superlattices with well-defined stop (high reflection) and pass (high transmission) bands are needed 
for good device efficiency. Since its seminal proposal3,4, semiconductor superlattices with Gaussian potential 
profile are regarded as the archetypal structure to obtain flat stop and pass bands with nearly 100% reflection and 
transmission probability. The fundamental properties of these non-uniform barrier height (non-conventional) 
superlattices were experimentally verified5. The electron-electron interaction and disorder effects were also stud-
ied5,6, having a limited influence on the filtering characteristics. The striking features of the so-called Gaussian 
superlattices sparked a lot of interest, deriving in multiple studies5–15. These studies have been extended to other 
elemental excitations16–21. Recently, non-conventional potential profiles have been used to improve the efficiency 
of thermoelectric devices and magnetic tunnelling junctions22–24. The common factor in all these studies is the use 
of the Gaussian profile or alike profiles to create nearly perfect stop and pass bands.

Under this context, a possible electronics based on cutting-edge materials like graphene will need efficient 
devices that act as injector, collector and/or active region. In fact, the so-called gated GSLs25–27, a graphene sheet 
with a periodic arrangement of top gates, represent a possibility. In these superlattices the propagation of charge 
carriers is highly anisotropic25,26. The energy minibands and minigaps depend strongly on the angle of the imping-
ing electrons, opening the possibility for an angle-dependent bandgap engineering27. The transmission minigaps 
(stop bands) can be tuned from meV to eV by changing the angle of incidence. An alternative is to fix the angle 
of incidence and enlarge the stop bands by using two or more gated GSLs with different periodic potentials28. 
To get the stop-band enlargement it is fundamental that the bandgaps of the constituent superlattices overlap. 
Another possibility are aperiodic and non-conventional gapped graphene heterostructures29–31. In this case, the 
omnidirectional electronic bandgap associated to gapped graphene can be extended by appropriately choosing 
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the widths of the potentials of the constituent superlattices29,30. It is also possible to have a tunable band-stop filter 
by modulating the Fermi velocity barriers and the external bias voltage in non-conventional fashion31.

As we have corroborated much attention has been paid to create and modulate stop bands in graphene super-
lattices. However, for superlattice devices pass bands are as important as stop bands. Unfortunately, the literature 
about pass bands in GSLs, specifically about how flattening them32, is scarce. For instance, magnetic GSLs with 
Gaussian modulation in the heights of the magnetic barriers could be an option for band-pass filters32. However, 
magnetic modulation with precise potential profiles could be tricky. Actually, gating is a more natural technique 
for 2D materials. In fact, most of the exotic and unprecedented phenomena in graphene have been tested with the 
help of this technique. With gating we will have electrostatic barriers with hole states inside them. These states 
are fundamental for most of the exotic phenomena in graphene, like Klein tunnelling33,34. However, as far as we 
know, the role of them in band-pass filtering has not been addressed. Other issue that has been controversial since 
the beginning of non-conventional superlattices is the shape of the potential profile3,7,12,30. Some works claim 
that Gaussian superlattices are the best for band-pass filtering3, others say that there is nothing special with the 
Gaussian profile and that any potential with smooth variation can serve as good band-pass filter7,30.

The aim of the present work is twofold: first, we want to know the relevance of hole states for band-pass 
filtering, and in order to do so, we will compare the transmission properties of two antagonistic systems, gated 
and gapped non-conventional GSLs; second, we want to find out to what extent the shape of the potential profile 
is preponderant for the filtering characteristics, so we will consider different non-conventional GSLs such as 
Gaussian, Lorentzian, Linear and Pöschl-Teller.

Model and Method
The schematic representation of the possible devices for non-conventional gated and gapped graphene superlat-
tices is shown in Fig. 1. In the case of gated GSLs (Fig. 1a) the graphene sheet is placed on a non-interacting sub-
strate like SiO2 and top gates are patterned to induce the non-conventional potential profile (Fig. 1b). The device 
also includes, not shown, a back gate and left and right leads. We can have potential barriers of different height by 
modulating the strength of the applied electrostatic field. It is also important to remark that there are hole states 
inside the barriers because the main effect of gating is a shifting of the Dirac cones, see Fig. 1b. In the case of 
gapped GSLs (Fig. 1c) the potential barriers are induced by substrates with different degree of interaction with the 

Figure 1. (a) Schematic representation (top view) of the possible gated GSLs. The orange stripes represent 
metallic electrodes at different potential energies. (b) Resulting potential profile of (a). Here, V1 and V3 
represent the maximum (Vmax) and minimum (Vmin) potential barriers in the system, and dB and dW the widths 
of the barrier and well regions. (c) and (d) are the same as in (a) and (b), but for gapped GSLs. In this case the 
potential barriers are generated by substrates with different degree of interaction with the graphene sheet ( ′t i). 
The main difference between gated and gapped GSLs is that in the former there are hole states inside the 
barriers, while in the latter the bandgaps = ′Eg t2i i prohibit the existence of hole states (E > 0) and electron 
states (E < 0) inside the barriers. By appropriately choosing the heights of the potential barriers we can obtain 
superlattices with Linear, Gaussian, Lorentzian and Pöschl-Teller potential profiles, see Fig. 2.
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graphene sheet. A possibility to generate the potential barriers could be the so-called heterostructured SiO2/SiC  
substrates35. In the SiO2 regions the Dirac cone structure of pristine graphene is preserved, while in the SiC 
regions the interaction between the graphene sheet and the substrate results in a bandgap opening36. The breaking 
of the sublattice symmetry of graphene is the main reason of the bandgap opening36,37. The different bandgap sizes 
necessary to get the non-conventional profiles could be achieved by playing with the termination of the substrate 
faces, the stoichiometry of SiC and/or the number of graphene layers36. Here, it is important to remark that half 
of the size of the bandgap results in barriers for electrons, and the other half in barriers for holes. Hence, we have 
the same potential profile for electrons (E > 0, with no hole states inside the barriers) and holes (E < 0, with no 
electron states inside the barriers), see Fig. 1d. So, by gating or interacting substrates, in principle, is possible to 
have non-conventional gated and gapped GSLs, respectively. In our case, we will consider Gaussian, Lorentzian, 
Linear and Pöschl-Teller potential profiles, see Fig. 2.

The semi-infinite and quantum well regions, in both gated and gapped GSLs, are described by the well-known 
monolayer graphene Hamiltonian σ= ⋅H v kfree F

38,39, with linear dispersion relation = ±E v kF  and 
eigenfunctions,

ψ =±

±

± +( )x y u e( , ) 1
2

1 ,
(1)k

ik x ik yx y

where vF is the Fermi velocity, k is the magnitude of the wave vector k in these regions, kx and ky are the longitudi-
nal and transverse components of k, and u± = ±sgn(E)e±iθ are the coefficients of the wave functions that depend 
on the angle of the impinging electrons, θ = arctan(ky/kx). The Hamiltonian for the gated regions is 

 σ= ⋅ +H v q V1gated F i i , with dispersion relation − = ±E V v qi F i  and eigenfunctions,

Figure 2. (a) Gaussian, (b) Lorentzian, (c) Linear and (d) Pöschl-Teller potential profiles of gated and gapped 
GSLs. In all cases the number of barriers is N = 21. The height of the potential varies in Gaussian, Lorentzian, 
Linear and Pöschl-Teller fashion going from a minimum value at the edges of the structure to a maximum value 
at the center of it. The mathematical function used in each case is also reported. Here, the function parameters 
(σ, Γ, NR and λ) are adjusted to the total length of the superlattice so that the minimum and maximum barrier 
heights is the same for all profiles.
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here Vi represents the strength of the electrostatic potential of the i-th barrier, qi is the magnitude of the corre-
sponding wave vector qi, qx,i and qy,i are the components of qi, and v±,i the coefficients of the wave functions35. For 
the gapped regions  σ σ= ⋅ + ′H v q tgapped F i i z and − ′ =E t v qi F i

2 2 2 2 2 . The eigenfunctions have the same mathe-
matical form as Eq. (2), however qx,i and v±,i depend on the bandgap energy ′ =t E /2i g i,

35.
This information, eigenfunctions and wave vectors, is essential to compute the transfer matrix of the system, 

and with it the transmission probability or transmittance. By imposing the continuity condition for the wave 
function along the superlattice structure as well as the conservation of the transverse momentum, we can obtain 
the transfer matrix of the system. For a non-conventional GSL of five barriers (N = 5) the transfer matrix can be 
written as

=M M M M M M M M M M , (3)W W W W3 2 1 2 3

where MW and Mi are the transfer matrices of the well and barrier (i-th) regions. As our structure is symmetric 
with respect to the central barrier there are only three distinct transfer matrices of the barriers M1, M2 and M3 in 
the case of N = 5. The transfer matrices of wells and barriers depend on the so-called dynamic and propagation 
matrices35. The energy and angle dependent transmittance can be obtained through the (1, 1) element of the 
transfer matrix

θ =
| |

.T E
M

( , ) 1
(4)11

2

Results and Discussion
In Fig. 3 we show the transmittance of (a) Gaussian, (b) Lorentzian, (c) Linear and (d) Pöschl-Teller gated GSLs. 
We consider the same structural parameters for all non-conventional gated GSLs. In concrete, the number of 
barriers, the maximum and minimum height of barriers, the width of barriers and wells as well as the angle of 
incidence considered were: N = 9, Vmax = 0.13 eV, Vmin = 0.01 eV, dB = 20a, dW = 80a and θ = 45°, respectively. The 
widths are given in terms of the carbon-carbon distance in graphene a = 0.142 nm. We have included the trans-
mittance of a uniform gated GSL, dotted-blue curves, as reference. As we can notice practically all 
non-conventional profiles reduce notably the transmittance oscillations of the uniform superlattice. We can also 
see that, regardless of the potential profile, the pass bands present a high probability, close to 100%. However, the 
pass bands are not well-defined, they have a rounded shape. It is also notice that the quality of the stop and pass 
bands diminish as the energy increases. Actually, that is a general characteristic of finite superlattices. In fact, as 
the energy increases the propagation of electrons is less influenced by the superlattice potential. A possible strat-
egy to improve the quality of stop and pass bands in a specific energy range is to increase the number of barriers, 
see the results for N = 21. For Gaussian and Pöschl-Teller GSLs a notch (small oscillation) arises at the high 
energy side of the pass bands. Linear GSLs have more than a notch (more oscillations) and Lorentzian GSLs have 
no oscillations, however the pass bands and stop bands are not as defined as in the other cases. In the case of 
gapped GSLs (Fig. 4) the pass bands have practically no oscillations and are better defined for the Gaussian pro-
file. Here, it is important to mention that the parameters of gapped GSLs are the same as the ones of gated GSLs. 
In particular, the t′i’s are the same as the Vi’s, specifically ′ = = .t V 0 13max max  eV and ′ = = .t V 0 01min min  eV. In 
Fig. 5 we show the transmittance of gated GSLs for N = 21. As we can see, increasing the number of barriers the 
oscillations increase and become more pronounced as well as the stop and pass bands adopt a better rectangular 
form. The Lorentzian profile (Fig. 5b) deserves a special mention because, despite the stop and pass bands not 
being well-defined as in the other non-conventional GSLs, the remanent oscillations in the pass bands are sub-
stantially reduced, in both, number and intensity. In Fig. 6 we show the corresponding results for gapped GSLs. 
As we can notice the transmission characteristics are nearly the same for all non-conventional gapped GSLs. It is 
remarkable that the pass bands are essentially flat and with 100% transmission probability. It is also important to 
highlight the perfect rectangular shape of the stop and pass bands of the Gaussian profile. If we further increase 
the number of barriers, results not shown, the remanent oscillations of gated GSLs increase even more, and the 
transmission characteristics, flat pass bands, among non-conventional gapped GSLs become equivalent.

If we now fix the energy and vary the angle of incidence we can obtain the so-called angular distribution of 
the transmittance T(θ). Figure 7 shows T(θ) for (a) gated and (b) gapped Gaussian GSLs. We have included the 
corresponding results for uniform GSLs as reference. The energy of the impinging electrons was fixed to E = 0.1 
eV, which is lower than the maximum barrier height of the system. The superlattice parameters are the same as in 
Figs 5 and 6. As in the case of T(E) the non-conventional profile eliminates the transmittance oscillations present 
in uniform GSLs. In the gated case we can see a flat pass band that spans from −50° to 50° with no oscillations at 
the edges. For gapped GSLs the range of perfect transmission is bigger, from −80° to 80°. These results are quite 
interesting because both gated and gapped non-conventional GSLs can work as omnidirectional filters. Here, it is 
fundamental to have control of the energy of the impinging electrons. In order to know what happens for other 
energies as well as to have a bigger picture of the transmission properties we have computed the contour maps 
(E, θ) of the transmittance. The corresponding results are shown in Fig. 8. As we can notice the non-conventional 
profile gives rise to dispersionless transmission bands, uniform dark-red zones. We can also see that the omnidi-
rectional pass bands of Fig. 7 have a considerable energy bandwidth. In particular, the bandwidth for gated GSLs 
is about 55 meV, while for gapped GSLs is about 40 meV. It is also important to mention that the high energy edge 
of the pass bands of non-conventional gated GSLs is not as uniform as the low energy edge. This non-uniformity 
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is related to the remanent oscillations previously discussed. This point is quite relevant for gated GSLs because if 
we want to avoid the remanent oscillations we have to consider energies that do not include the high energy edge 
of the transmission bands. For instance, if we choose an energy of 0.23 meV, which is above the maximum barrier 
height, the outermost transmission bands of gated GSLs (Fig. 9a) present remanent oscillations. On the contrary, 
gapped GSLs (Fig. 9b) present perfect pass bands.

For completeness of the present study we consider that some important remarks are necessary.
Firstly, we can attribute the remanent oscillations to the hole states inside the barriers of gated GSLs because 

this is the fundamental difference between gated and gapped GSLs. So, further analysis is needed in order to 
unveil why the oscillations are located in the high energy edge of the transmission bands as well as to design 
strategies to eliminate them.

Secondly, as in the case of superlattices of conventional materials the transmission characteristics of GSLs 
can be modulated through the superlattice parameters. For instance, by modulating dB, dW, Vmax and Vmin we 
can change the location, width and number of pass bands. However, it is quite important to maintain a good 
Vmax/Vmin contrast, otherwise we can approximate the structure to a uniform GSL, and consequently the filtering 
characteristics will be far from a good band-pass filter. In GSLs another parameter that can change the location, 
number and effective width of pass bands is the angle of incidence. Even more interesting, the Gaussian profile 
for gapped GSLs is the best for band-pass filtering when the width/spacing of the barriers is adjusted to cover 
the same total length of a specific (particular N) GSL. We have computed different cases for width/spacing of the 
barriers for gapped GSLs with N = 21, and compare them with gated GSLs. The results shown that the Gaussian 
profile is still the best for band-pass filtering as well as how important is the role of hole states inside the barriers 
for preserving or not the flatness of the transmission bands. However, it is important to mention that in order to 
have exceptional flat pass bands it is a matter of a delicate balance between the structural parameters, that is, not 
all combinations will ensure exceptional band-pass filters. For more details about the impact of the structural 
parameters on the band-pass filtering characteristics see the Supplementary Material.

Thirdly, we found that Gaussian gapped GSLs are the best option as band-pass filters when the number of bar-
riers is reduced. In particular, we assessed the case of N = 9. However, it is expected that a critical N exists because 
for a very reduced number of barriers the profiles will be practically the same. According to our calculations 

Figure 3. Transmission probability or transmittance versus the energy of the incident electrons for gated 
graphene superlattices with (a) Gaussian, (b) Lorentzian, (c) Linear and (d) Pöschl-Teller potential profiles. 
In all cases the number of barriers, the heights of the maximum and minimum potential barriers, the widths 
of the barrier and well regions as well as the angle of incidence were the same. The specific values for all 
these quantities were N = 9, Vmax = 0.13 eV, Vmin = 0.01 eV, dB = 20a, dW = 80a and θ = 45°, respectively. 
Here, a represents the carbon-carbon distance in graphene, 0.142 nm.The dotted-blue curves correspond 
to the transmittance of uniform gated GSLs. The height of the uniform barriers is Vmax. The other structural 
parameters are the same as for non-conventional GSLs.
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Gaussian gapped GSLs are the best option up to N = 6, see the Supplementary Material. Here, it is important to 
take into account that when dealing with few barriers the stop and pass bands are not well-defined. So, as stop 
bands are as important as pass bands it is crucial to choose a considerable number of barriers that ensures good 
device functionality.

In fourth place, for gated GSLs we have considered potential barriers for electrons (positive Vi’s) as well as 
electrons as the dominating charge carriers (positive bottom-gate voltage). However, the same results can be 
obtained if we consider barriers for holes (negative Vi’s) and holes as the dominating charge carriers (negative 
bottom-gate voltage). The corresponding results can be found in the Supplementary Material. In the case of 
gapped GSLs the same potential profile corresponds to electrons and holes, see Fig. 1d. So, we can obtain essen-
tially the same results for electrons or holes as dominating charge carriers. The results for holes are presented in 
the Supplementary Material.

In fifth place, it is important to remark that in the last part of the present study we focus our attention to 
Gaussian GSLs due to the relevance of this profile, however similar results can be obtained for the other 
non-conventional profiles. The transmission maps for the Lorentzian, Linear and Pöschl-Teller profiles are shown 
in the Supplementary Material.

Last but not least, it is the possible experimental device for non-conventional gapped GSLs. Although, hetero-
structured substrates are a possibility as far as we know there are not reports about this option. A more realistic 
possibility could be hydrogenated graphene. It is well known that a bandgap can be induced in graphene by 
patterned hydrogen adsorption40 as well as a reversible and tunable bandgap by varying the hydrogen coverage41. 
In addition, hydrogenated graphene can be used as active precursor to create hybrid superlattices42. So, in prin-
ciple, graphene with regions with different hydrogen coverage (hydrogenated GSLs) could be a possible route to 
achieve non-conventional gapped GSLs, and hence efficient band-pass filters. Another possibility that could be 
reliable from the experimental standpoint is graphene over a uniform substrate such as SiC or hBN, and top gates 
and a back gate43. The uniform substrate opens a bandgap over the whole graphene sheet, while the top gates and 
the back gate generate the potential barriers and modulate the Fermi energy, respectively. The non-conventional 
potential profiles could be achievable, without the need of heterostructured substrates, by simply varying the top 
gate voltages in non-uniform fashion. This superlattice structure represents a mixed case of the gated and gapped 
GSLs that we are dealing with, and consequently a thorough study and analysis is needed in order to unveil the 
particularities that both cases in conjunction provide. Other 2D materials like bilayer graphene, silicene, phos-
phorene and transition-metal-dichalcogenides could be an option for electron band-pass filtering due to their 

Figure 4. The same as in Fig. 3, but for gapped GSLs. Here, all ′t i are the same as the Vi of gated GSLs. In 
particular, ′ = = .t V 0 13max max  eV and ′ = = .t V 0 01min min  eV. The dotted-blue lines represent the 
transmittance of uniform gapped GSLs.
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Figure 5. The same as in Fig. 3, but for N = 21.

Figure 6. The same as in Fig. 4, but for N = 21.
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intrinsic band structure characteristics. In particular, bilayer graphene represents an excellent option because a 
bandgap and the chirality of the charge carriers can be modulated with gating44,45.

Conclusions
In summary, we show that the chiral nature of the charge carriers in graphene as well as the superlattice potential 
profile are essential for good band-pass filtering. By comparing the transmission properties of gated and gapped 
GSLs of Gaussian, Lorentzian, Linear and Pöschl-Teller potential profiles we obtain that the hole states inside the 
barriers of gated GSLs are the main obstacle for good band-pass filtering. Regardless of the potential profile and 
the number of barriers persistent oscillations in the transmission bands hamper the formation of perfect or nearly 
perfect pass bands. For gapped GSLs we obtain excellent band-pass filtering characteristics. Gaussian GSLs have 

Figure 7. Angular distribution of the transmittance for (a) gated and (b) gapped Gaussian GSLs. The energy 
of the impinging electrons is E = 0.1 eV. The transmittance for uniform GSLs (dotted-blue curves) has been 
included as reference. The superlattice parameters are the same as in Figs 5 and 6.

Figure 8. Contour maps (E, θ) of the transmittance for Uniform ((a) gated and (b) gapped) and Gaussian ((c) 
gated and (d) gapped) GSLs. The superlattice parameters are the same as in Fig. 7.
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the best filtering when the number of barriers is reduced, while all gapped GSLs are good filters, practically equiv-
alent, for large number of barriers. Furthermore, we find that both gated and gapped non-conventional GSLs can 
work as omnidirectional band-pass filters. For gated GSLs it is important that the omnidirectional energy band-
width does not include remanent oscillations. We consider that our results can be useful in designing electron 
band-pass filters based on non-conventional GSLs.
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