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Corresponding author: I Garza-Veloz. Email: idaliagv@uaz.edu.mx

Abstract
Preeclampsia (PE) is a pregnancy complex disease, distinguished by high blood pressure and

proteinuria, diagnosed after the 20th gestation week. Depending on the values of blood pres-

sure, urine protein concentrations, symptomatology, and onset of disease there is a wide

range of phenotypes, from mild forms developing predominantly at the end of pregnancy to

severe forms developing in the early stage of pregnancy. In the worst cases severe forms of

PE could lead to systemic endothelial dysfunction, eclampsia, and maternal and/or fetal

death. Worldwide the fetal morbidity and mortality related to PE is calculated to be around

8% of the total pregnancies. PE still being an enigma regarding its etiology and pathophys-

iology, in general a deficient trophoblast invasion during placentation at first stage of

pregnancy, in combination with maternal conditions are accepted as a cause of endothelial

dysfunction, inflammatory alterations and appearance of symptoms. Depending on the PE

multifactorial origin, several in vitro, in vivo, and in silico models have been used to evaluate the PE pathophysiology as well as to

identify or test biomarkers predicting, diagnosing or prognosing the syndrome. This review focuses on the most common models

used for the study of PE, including those related to placental development, abnormal trophoblast invasion, uteroplacental ischemia,

angiogenesis, oxygen deregulation, and immune response to maternal–fetal interactions. The advances in mathematical and com-

putational modeling of metabolic network behavior, gene prioritization, the protein–protein interaction network, the genetics of PE,

and the PE prediction/classification are discussed. Finally, the potential of thesemodels to enable understanding of PE pathogenesis

and to evaluate new preventative and therapeutic approaches in the management of PE are also highlighted.
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Introduction

Preeclampsia (PE), a pregnancy-specific disorder distin-
guished by high blood pressure and proteinuria as a

consequence of abnormal placentation, is diagnosed after
the 20th week of gestation. Increased systemic vascular
resistance, endothelial cell dysfunction, platelet
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aggregation, and altered activation of the coagulation
system have been associated with PE, representing one of
the principal responsible of perinatal and maternal morbi-
mortality worldwide, especially in developing countries,
affecting 5–8% of all pregnancies.1,2 Clinical manifestations
of PE include a maternal syndrome (proteinuria [�300mg
in 24-h urine] and high blood pressure [�140/90mmHg])
with or without other multisystem abnormalities such as
edema, headache, renal failure, epigastric pain, low platelet
count and abnormal liver enzyme values, and fetal syn-
drome (hypoxemia, diminished amniotic fluid and small-
for gestational age).2

Exist several theories about the ultimate cause of PE, and
nowadays it is thought that the etiology is most likely mul-
tifactorial. The appearance of the disease can be influenced
by several predisposing factors. The oftenness and severity
of PE are considerably elevated in women with multifetal
pregnancies, chronic high blood pressure, a personal and
family history of PE, pre-existing diabetes mellitus, and
thrombophilia.3 The presence of high concentrations of cir-
culating syncytiotrophoblast debris, genetic susceptibility,
maternal immunological alterations, nutritional factors,
and an increased sensitivity to angiotensin (AT) II could
play a fundamental part in the etiology of PE.2,4–6

As referred before, it is widely recognized that a defi-
cient placentation process is the primary cause of PE. In a
normal pregnancy, endovascular trophoblast invasion
transform the spiral arteries of the decidual part at 8–10
weeks of gestation (WG) (first invasion) and of the myome-
trial part at 16–18 WG (second invasion), invading the arte-
rial wall and expanding its diameter from narrow to large
by replacing normal musculoelastic to amorphous fibrinoid
tissue of the arteries, allowing with this physiological trans-
formation an adequate blood flow of the placenta.7,8 Failure
of the second trophoblast invasion with an abnormal phys-
iological transformation of the spiral arteries are observed
in PE, directing to placental ischemia-reperfusion, oxida-
tive stress, endothelial dysfunction (a disequilibrium
among pro and anti-angiogenic proteins with a predomi-
nance of the last one), and the origin of the clinical mani-
festations of disease.9

Because PE-related cellular and/or molecular abnormal-
ities occur between 8 and 18 WG, the impossibility of
obtaining placental tissues from early stages of gestation
and the delayed clinical manifestations of PE (until after
26 to 28 WG in its earliest form, or after 34 to 36 WG in
late PE10) represent the two biggest problems in the study
of this disease. Accordingly, the approaches to study PE
mostly depend on specimens (placentas) obtained after
delivery, limiting the findings and information to relatively
late PEmanifestations. Intrinsic complications in the in vitro
and in vivo research of placental implication to this human
disease require the development of model systems.

Since no model by itself has thoroughly reproduced this
affection, a diversity of in vitro, in vivo, and in silico techni-
ques have been employed, as well as several “PE-like”
models.4 This review focuses on the most common
models used for the study of PE, including those related
to placental development, abnormal trophoblast invasion,
uteroplacental ischemia, angiogenesis, oxygen

deregulation, and immune response to maternal–fetal
interactions. The mathematical and computational perspec-
tive commonly employed to model gene prioritization, pro-
tein–protein interaction network analysis, metabolic
network behavior, the genetics of PE, and the PE prediction
and classification are discussed. Finally, the potential of
these models to understand the pathophysiology of PE, as
well as to evaluate prevention actions and new treatment
strategies in the control of this pregnancy-specific disorder,
is also highlighted.

In vitro models of PE

Four types of in vitro models for PE have been described in
the literature: (1) cell cultures, (2) placental explants, (3)
co-cultures, and (4) placental organ cultures (see Figure 1
and Table 1 in Supplementary material File 1).

In PE these models are used to elucidate the mechanism
controlling trophoblast cell lineage development, as well as
for analysis of trophoblast invasion, endocrine function,
immune response, oxygen dysregulation, metabolism,
transport, syncytium formation, morphogenesis and adap-
tation to disease, placental development, and to assess the
effect of PE biomarkers or molecules with therapeutic
potentials.11–14

The experimental approaches include isolating, culturing,
establishing and manipulating primary cell line cultures
from trophoblast, malignant choriocarcinoma, embryonal
lines with trophoblast differentiation, and stem cells from
mammalians (humans, rodents such as mice, golden ham-
sters, rats and rabbits, bovines, pigs, sheep, and non-human
primates such as rhesus monkeys and marmosets).15

In particular, trophoblast cell lines can be obtained
through the culture of primary villous, extravillous and pla-
cental cells, or from already established trophoblastic cell
lines (obtained from normal or malignant cells). Several of
these cell lines have been virus transfected, such as cell lines
from HTR-8/SVneo and SGHPL cells, acquiring the advan-
tage of longer proliferation in culture than primary cells.16 To
extend the utilization of these cell lines, the International
Federation of Placenta Associations (IFPA) covenanted the
biological criteria for the characterization of established tro-
phoblast cell lines and primary cell cytotrophoblast cultures,
in a trophoblast cell line workshop at the European Placenta
Group (EPG) meeting in 1999.17 The current villous tropho-
blast cellmodelmostwidely used is the choriocarcinoma cell
line BeWo due to it displays most of the attributes of villous
trophoblast, such as the formation of syncytiotrophoblast
fusion by regulation of syncytin-1 gene expression as well
as secretion of human chorionic gonadotropin, prolactin,
progesterone, and estradiol.16

Some of the drawbacks of the primary cell cultures are
that they cease to proliferate and dedifferentiate when they
lose cell–cell interaction, contact with secreted signaling
molecules and/or 3D extracellular matrix structure.18 To
overcome these limitations, 3D co-culture models and pla-
cental explants have been developed, allowing these
important cellular interactions to function as an ordered
multicellular arrangement where the cells can take advan-
tage of resources and execute functions that would be not
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possible as individual cells.18 There are two different types
of placental explant culture: (A) Early placental cultures for
the study of invasion and differentiation of the extravillous
trophoblast. This could be first-trimester placental villi
explanted on gels of a permissive extracellular matrix or a
standard trans-filter trophoblast migration started from a
homogeneous preparation of primary cells released from
the tissue.19 (B) Term placental cultures for the evaluation
of villous trophoblast proliferation and function, and for
assessing preventive and therapeutic agents for PE.20

With regard to 3D co-culture models, co-cultures of
trophoblasts with peripheral blood mononuclear cells,
macrophage, neutrophils or NK cells have been developed
to evaluate the immune response and trophoblast–immune
cell interactions.13,21–24 In the same sense, in the evaluation
of cell proliferation, migration, invasion, and endothelial
cell interactions, co-cultures of human umbilical vein endo-
thelial cells (HUVECs) and trophoblasts grown in low oxy-
genation conditions have been performed.25–27 Co-culture
of trophoblast and human uterine myometrial microvascu-
lar endothelial cells, or with human endometrial endothe-
lial cells, has also been used to evaluate the oxygen
dysregulation effects.28 In all the mentioned models of pla-
cental cells, different co-culture matrix compounds in a 3D
conformation have been tested, including collagen and
matrigel, among others.21,26

Investigate the human placenta constitutes a major
experimental feat. In spite of the cell culture, co-cultures
and explants have been used as essential tools for the

study of different types of placenta-derived cells; they are
unable to resemble the placenta-specific structure and func-
tions. To overcome these problems, Lee et al., created, in
2016, a placental organ culture system through the devel-
opment of a “placenta on a chip” microdevice, which
included two polydimethylsiloxane (PDMS) microfluidic
channels divided by a membrane. To resemble this model
the placental barrier, HUVECs and JEG-3 trophoblast cells
were cultured onto the opposite sides of the extracellular
matrix membrane (ECM) to form endothelial and epithelial
side-by-side layers. This microdevice demonstrated that it
is possible to develop a microengineered biomimetic model
that replicates the architecture and function of the placenta,
and provides new opportunities to simulate and analyze
critical physiological responses of the placental barrier.14

Despite the great utility of the in vitromodels, the nature
of the disease limits their use: specifically, PE implicate
modifications in the behavior and communication of fetal
trophoblast cells with maternal endothelium4 (see Figure 1
and Table 1 in Supplementary material File 1).

In vivo models of PE

An ideal animal model for PE should reproduce as best as
possible the complex pathogenesis and symptoms that
underlie the disease, involving the appearance of maternal
pregnancy high blood pressure and proteinuria that should
be resolved after delivery of the placenta.29 As mammals
differ in the placentation process, it is difficult to find

Figure 1. Preeclampsia in vitro research model systems. For detailed information, see the supplementary material File 1.
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a model that satisfies completely these criteria. Table 2 sum-
marizes the in vivo models for the study of PE and their
main advantages and limitations (see Table 2 in
Supplementary material File 2). In the next paragraphs
the most common in vivo models for the study of PE have
been described.

Trophoblast invasion models

The placenta plays a fundamental role in the development
of PE; it is a specialized pregnancy-organ that is formed
with the development of the embryo and fetus, and is com-
prised of several cell types, but a large part correspond to
the trophoblast cells, which participate in the pregnancy-
dependent uterine vascular remodeling to provide
nutrients to the embryo and gas and waste exchange.30 In
some species, trophoblast cells penetrate into the uterine
compartment, establishing intimate relationships with the
maternal vasculature (hemochorial placentation), a process
commonly observed in some Insectivora, Rodentia,
Chiroptera, Hyracoidea, Dasypodidae, Lagomorpha,
Crocuta, and Primates. It is believed that these groups are
intimately linked to the primitive ancestral mammalian
stock, conserving numerous of its anatomical characteris-
tics.31 Other species exhibit minimal trophoblast invasion
resulting in a segregation of maternal and trophoblast tis-
sues. This type of placentation (epitheliochorial) is seen in
domesticated animals, including pigs, and ruminants.31

Intrauterine trophoblast cell invasion is an essential part
of hemochorial placentation, and abnormalities in this pro-
cess are a prominent feature of PE. Nowadays rodents have
been reported as in vivo models for the research of tropho-
blast invasion. Ain et al. generated mice and rats with IFN-
gamma genetic deficiency to examine the regulation, the
endocrine phenotype and the invasiveness of trophoblast
cells.32 In the same sense, Arroyo et al. and Geusens et al.
described different in vivo methods using transgenic rat
models, to assess endovascular trophoblast cell invasion,
spiral artery remodeling, and uteroplacental hemodynam-
ics.33,34 Mess et al. studied caviomorph placentation
through the analysis of patterns of trophoblast invasion in
guinea pigs and degus, proposing that caviomorphs are
appropriate animal models for the study of trophoblast
invasion since it should be analogous to humans.35

Finally, Verlohren et al. treated pregnant rats with doxycy-
cline to reduce the trophoblast-vascular remodeling,
decreasing following perfusion of the placenta. The
model enables the assessment of abnormal vascular remod-
eling and trophoblast invasion in vivo to obtain significant
understanding into PE-related mechanisms.36

Uteroplacental ischemia models

As a consequence of an inadequate trophoblast invasion,
uteroplacental ischemia is an important initiating event in
PE, is considered a key factor in its pathogenesis and leads
to extend vasoconstriction, high blood pressure, and the
maternal vascular endothelium dysfunction.37 The first
models primarily addressed the mechanism of abruptio
placentae in dogs (1953), rabbits (1963), rhesus monkeys

(1968), and baboons (Papio anubis, 1974) by ligating perma-
nently or temporarily the inferior vena cava, intercotyledo-
nary vessels and uterine arteries in pregnancy, causing
gradual high blood pressure and proteinuria, which con-
cluded after delivery.38–41 Later Abitbol et al. perfected the
method of abruptio placentae in rabbit, dogs, and monkeys
(Macaca mulatta) by ligating to a specific degree of stricture
the terminal aorta, causing high blood pressure, protein-
uria, placental lesions, fetal growth restriction, and
damage in liver and kidney, similar to those found in
human PE.42–44 The murine models for uteroplacental
ischemia were developed until 1987, when Eder and
MacDonald used laboratory rats (Sprague-Dawley) as an
experimental model for pregnancy-induced systemic high
blood pressure that was generated through a surgical
reduction of blood pressure by 30–35% of aorta capacity.45

Later, Granger et al. developed a reduced uterine perfusion
pressure (RUPP) model frommodifying and characterizing
the rat model of Eder and MacDonald, for the evaluation of
cardiovascular–renal dysfunction as a consequence of pla-
cental ischemia.46 The oxygen imbalance could result from
uteroplacental ischemia due to the hypoxia generated. The
transcription factor hypoxia-inducible factor-1 (HIF-1) is a
proficient regulator of systemic and cellular homeostatic
response to low levels of oxygen and plays a key role in
placental development. Several murine models such as
C57BL/6J pregnant mice have been developed to evaluate
the effects of systemic administration of adenovirus
expressing stabilized HIF-1a on pregnancy,47 CITED2-
knockout C57BL/6:129 mice, a gene that prevents transac-
tivation of HIF-1a-induced genes through competing with
binding of HIF-1a,48 catechol-O-methyltransferase
(COMT)-knockout C57BL/6J mice, a gene that generates
the HIF-1a inhibitor 2-methoxyestradiol (2-ME),49 and
pregnant C57BL/6JArc mice TNF-a infused.50 These
models showed elevated blood pressure, proteinuria,
reduced embryo and placental weights, fetal intrauterine
growth restriction (IUGR), histopathological placental
aberrations, and glomerular endotheliosis, hallmark lesions
of PE.

Models for angiogenesis study

Increasing evidence suggests that disturbances in angio-
genic factor (such as placental growth factor [PGF] and
vascular endothelial growth factor [VEGF]) signaling and
endothelial health can play a fundamental role in the path-
ogenesis of PE.51 Exogenous administration of the anti-
angiogenic factors soluble endoglin (sENG) and/or soluble
fms-like tyrosine kinase-1 (sFlt-1), results in a PE-like phe-
notype in pregnant rats and mice.51–54 The first model was
developed by Maynard et al. They established the sFlt-1-
induced rat model of PE through the injection of adenovi-
rus encoding themurine sFlt1 gene product (at 1� 109 PFU)
into the tail vein of Sprague-Dawley rats on early second
trimester (day 8–9 of pregnancy), resulting in proteinuria,
high blood pressure, and glomerular endotheliosis, the typ-
ical injuries of PE.51 Venkatesha et al. intravenously admin-
istered Sprague-Dawley pregnant rats with 2� 109 PFU of
adenovirus encoding sFlt1 (Ad.sFlt1), sEng (Ad.sEng) or
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Ad.sEngþAd.sFlt1 at day 8 or 9 of pregnancy, resulting in
PE-like syndrome, while the coadministration of sEng and
sFlt1 amplified the symptoms, leading to severe PE includ-
ing HELLP syndrome and restriction of fetal growth.53 And
finally Kumasawa et al. incubated zona pellucida-free blas-
tocysts collected from B6D2F1 pregnant females in medium
containing lentiviral vectors coding for sFlt1 (pLVhsFLT1),
sEng (pLV-EGFP) and/or PGF (pLV-mPGF). The trans-
duced blastocysts were implanted into pseudopregnant
imprinting control region (ICR) females, resulting in pro-
teinuria and high blood pressure along pregnancy, and the
symptoms disappeared after delivery. The model recog-
nizes candidates for PE treatment such as low-dose statins
and PGF.52 High levels of sEng and sFlt-1 are commonly an
indication of imminent PE and IUGR.55 Two simple animal
models for PE were developed byMolnár et al., who caused
a chronic inhibition of nitric oxide synthesis (NOS), a medi-
ator of angiogenesis, in pregnant rats through the continu-
ous administration of L-nitro-arginine (a strong inhibitor of
NOS), producing a PE-like syndrome,56 and by Carlstr€om
et al., who treated pregnant rats with Suramin (an angio-
genesis inhibitor) during early placentation, causing high
blood pressure and placental dysfunction.57 These models
are useful not only for the study of angiogenesis deregula-
tion but also the downstream pathophysiology and treat-
ment of PE.

Oxidative stress models

Placental oxidative stress plays a fundamental role in the
pathogenesis of PE. It is a result of increased free radicals
and superoxide produced in the course of pregnancy that
could attack nucleic acids, proteins, and lipids, generating
the injury of both placental cell and tissue and in some
cases the complete organ. Oxidative stress promotes mater-
nal vascular endothelial dysfunction and induces leukocyte
activation that could compromise fetal growth.58 With the
aim of determining whether maternal disturbances during
pregnancy induce placental oxidative stress, Beauséjour
et al. developed an animal model that shows a PE-like syn-
drome by making sodium intake in drinking water higher
(0.9% or 1.8% NaCl) along the last WG in rats. Markers of
oxidative stress were measured in the placenta, identifying
alterations in TNF-a expression, vasoactive substances
(eNOS and prostanoids) levels, total glutathione content,
and apoptotic index, resulting in increased placental cell
dysfunction and death. According to their results, maternal
perturbations during pregnancy may induce placental
oxidative stress.58

Immune models

A rigorous balance between suppression and immune tol-
erance is necessary for a normal pregnancy, any disparity
between pro-inflammatory and anti-inflammatory chemo-
kines and cytokines may lead to abnormal inflammation,
which is usually observed in PE.59 Several animal models
have been established to investigate the participation of the
immune response in the pathogenesis of PE. One of the first
models was the one developed by Faas et al., who

administered an ultra-low-dose endotoxin (a bacterially
derived hydrophobic molecule that induces the immune
response) infusion in conscious pregnant rats, resulting in
a PE-like syndrome.60

The major findings of several immunemodels have been
achieved by administering inflammatory cytokines to
murine and non-human primate models. For example, in
pregnant Sprague-Dawley rats, treatment with IL-6 directly
enhanced vascular contraction and impaired endothelium-
dependent relaxation in systemic vessels.61 In baboons
(Papio hamadryas), the intravenous administration of IL-10
and TNF-a in early pregnancy led to vasoconstriction and
endothelial dysfunction.62,63 These results demonstrated
the usefulness of the administration of cytokines for induc-
ing PE-like symptoms in animal models for the study of PE
pathogenesis.

As regard knockout murine models, IL-10-knockout
pregnant C57BL/6 mice exposed to low levels of oxygen
or Toll-like receptor 3 (TLR-3) agonist polyinosinic-
polycytidylic acid (poly I:C) resulted in rated placental
injury and proteinuria, high blood pressure, and systemic
manifestations of renal pathology.64,65 Pregnant TNF-a
infused C57BL/6JArc mice showed placental upregulation
of TLR-3 and TLR-4 (molecules responding to inflamma-
tion) and PE-like syndrome.50 Chatterjee et al. observed in
women with PE a significantly increased level of the TLR3/
7/8 family, which has a main participation in the activation
of innate immunity, hypothesizing that its activation will be
enough to produce PE-like symptoms in mice. They treated
pregnant C57BL/6J mice with the TLR7/8 agonist CLO97,
the TLR7-specific agonist imiquimod (R-837) and the TLR3
agonist polyinosinic-polycytidylic acid (poly I:C), causing
PE-like syndrome.66

A PE mouse model was established by Zenclussen by
transferring to allogeneically pregnant BALB/c female
mice, activated BALB/c Th1-like splenocytes, during late
gestation. This cell transfer only caused PE-like syndrome
in pregnant animals, further affecting the pregnancy out-
come by increasing fetal rejection through an inflammatory
profile of uterine immune cells.67

PE could be a pregnancy-induced autoimmune disorder,
result of autoantibody-induced AT receptor activation, a
mediator of AT II (a potent vasopressor hormone) observed
in women with PE. This hypothesis has led to developed
models in both rats andmice, through the administration of
anti-AT1-receptor antibodies along pregnancy inducing
PE-like syndrome.68,69

A new rat model by administering intraperitoneal low-
dose cadmium chloride (CdCl2), an inductor of immune
abnormalities, in pregnant Wistar rats at gestational days
9–14 was established by Zhang et al.; in their model, PE-like
syndrome was observed.70

Others

Arginine vasopressin (AVP) is a hormone that acts on the
kidney as antidiuretic controlling the fluid balance, and
also increases the arterial blood pressure through vasocon-
striction of the peripheral vessels. Santillan et al. developed
a novel and clinically relevant model of PE through the
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administration of a chronic infusion of AVP along pregnan-
cy of C57BL/6J mice, being enough to phenocopy PE.71

Spontaneous animal models of PE have been discovered.
Guinea pigs and patas monkeys were the first inbred
animal model reported that spontaneously generates a syn-
drome that present a close similarity to PE.72,73 Recently,
spontaneous murine models have been described: the
BPH/5 has borderline high blood pressure before pregnan-
cy, being used to study early feto-placental aberrations
prior to the appearance of maternal disease,74,75 and the
Dahl salt-sensitive rat, a genetic and spontaneous model
of PE, exhibiting a phenotype consistent with several of
the features observed in human PE, such as high blood
pressure and kidney disease, although it does not exhibit
decreasing in uterine artery resistance along late
pregnancy.76

Thus, although in vivo studies continue to be necessary,
the animal models described above improve our under-
standing of the pathogenesis of PE and lead to the identifi-
cation and testing of new therapeutic targets for its
treatment (see Figure 2 and Table 2 in Supplementary
material File 2).

In silico models of PE

PE displays system behaviors that are not easily anticipat-
ed, involving numerous and tightly controlled molecular

interactions that cannot be comprehended if the biological
molecules are treated individually, rather than considering
them as an integrated system. The dependence on only
employing in vitro and in vivo models to study PE is conse-
quently not enough and the investigation of molecular
interactions in detail is required in order to dissect the
mechanisms of the etiology, pathophysiology, and progres-
sion of the disease in humans.

Several mathematical and computational strategies have
been commonly used to model gene prioritization, protein–
protein interaction network analysis, metabolic network
behavior, the genetics of PE and the rating of women
with normal, hypertensive and preeclamptic pregnancy in
distinct WG, and to predict the development of PE. These
include co-expression network construction, metabolic
pathway analysis, genetic algorithms, discriminant analy-
sis classification methods, linear regression, multivariate
logistic regression, modular and node analysis, and artifi-
cial neural networks (ANNs) (see Figure 3 and Table 3 in
Supplementary material File 3).

Logistic regression is a popular and widely used analy-
sis to build multifactorial models to predict the develop-
ment of a disease. In PE, several researchers have
investigated the utility of clinical variables, maternal char-
acteristics, and biophysical and biochemical markers
obtained early during gestation, to develop models for pre-
dicting PE (occurrence and severity).77–84

Figure 2. Preeclampsia in vivo research model systems. For detailed information, see the supplementary material File 2.
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The variables that have been modeled include maternal
age, body mass index (BMI), height, parity, blood pressure,
hematocrit count, smoking, previous miscarriage, family
history of high blood pressure, ultrasound variables such
as mean arterial pressure (MAP) and uterine artery pulsa-
tility index (PI),85–88 first-trimester urine and serum metab-
olomic profiles,89 and biochemical markers such as
maternal plasma or serum levels of placental protein-13,
PGF, pregnancy-associated plasma protein-A, P-selectin,
pentraxin-3, activin-A, inhibin-A, and sENG.90 The predic-
tion efficacy of each model may be compared considering
the specificity and sensitivity values and/or with the area
under the curve.

Several significant advances have been promoted in cog-
nitive science by the use of economical computer simula-
tions, specifically with the development of ANNs, created
by the logician Walter Pitts and the neurophysiologist
Warren McCulloch in 194391 as a potential alternative to
linear regression, multivariate logistic regression and
other conventional statistical analysis. ANNs are a group
of statistical learning models inspired by the network of
neurons in a brain, integrated by interconnected neurons
(processing elements) functioning simultaneously to
resolve specific problems.92 The networks can be adjusted
based on experience, making them adaptive to inputs and
able of learning, with the notable ability to infer meaning
from imprecise or complex data that can be used to identify
trends and discover profiles that are too difficult to be rec-
ognized by either humans or other computer techniques.92

In PE, ANNs have been used as a prediction and classi-
fication model. Mello et al. applied an ANN to a group of
laboratory and clinical data (ferritin, iron, hematocrit, total

proteins, uric acid, creatinine and urea) obtained at 16 and
20 WG to evaluate the efficacy in predicting the develop-
ment of PE in high-risk pregnant women. Compared with a
previous multivariate logistic regression approach, the
ANN showed high sensitivity (86.2% vs. 79.3%), specificity
(95.4% vs. 97.7%), and positive (86.2% vs. 92%) and negative
predictive values (95.5% vs. 93.4%), representing an alter-
native predictive model that can be performed in early
pregnancy (16–20 WG), and considered a tool for primary
prevention, breaking off the disease process prior the clin-
ical onset of an overt disease.93 Tejera et al. constructed a
model for classifying women with normal, hypertensive
and preeclamptic pregnancy in distinct WG employing
blood pressuremeasurements, maternal history, andmater-
nal heart rate variability (HRV) indexes. The obtained
results revealed sensitivity for PE of around 80% and an
even higher percentage for hypertensive and normal preg-
nancy groups. Otherwise, specificity in identifying PE
women was approximately 85–90%. These results show
that the combination of an ANN with HRV indexes could
be useful in the characterization and study of pregnancy.94

Conclusion

Despite the great technological developments in health sci-
ences, current in vitro, in vivo, and in silico models still have
limitations in recapitulating all the molecular and clinical
aspects of PE. The fact that the etiology of PE remains con-
troversial, and the clinical manifestation of the disease
presents great heterogeneity, differing from early to late
onset of PE and from mild to severe forms of the disease,
makes the study of PE a big experimental challenge.

Figure 3. Preeclampsia in silico research model systems. For detailed information, see the supplementary material File 3.
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Although PE has been complex to study in humans due to
difficulties in the delayed appearance of the clinical mani-
festation, the impossibility of obtaining placental tissues
from early stages of gestation and the ethical and technical
considerations that preclude the performance of human
experiments, human studies are still the gold standard in
interpreting the epidemiology and clinical implications of
the disease. Therefore, the current model systems offer
many advantages in overcoming the research limitations
imposed by human studies, and have contributed signifi-
cantly to understanding the clinical correlations between
genetic, molecular biologic, biochemical, physiologic and
pathologic analysis, giving great insights into the disease,
and in some cases, leading to randomized controlled trials
being conducted in humans.

Despite the potential of these models to enable compre-
hension of the pathogenesis of PE and to test preventative
and therapeutic strategies in its management, additional
research is needed to develop new model systems that
lead to the provision of helpful information on how to pre-
vent placental dysfunction in PE.
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