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A B S T R A C T

Optical and electronic properties of multilayer systems have been extensively studied in the last
years due to its potential applications in high-performance optoelectronic and photonic devices.
In particular, the role of plasmonic modes is critical in such systems leading to improvements in
solar cells efficiency, detection of biosensors, Raman signal enhancement, among others. In this
work, we study the plasmonic modes in a multilayer system composed of graphene layers em-
bedded within dielectric materials. The dispersion relation of plasmonic modes is obtained by
calculating the poles of reflectivity using the transfer matrix method. We show the attenuated
total reflection spectra for a multilayer graphene-dielectric structure, and determine the optimum
distance between the prism and the multilayer system for detecting graphene plasmons in the
Otto configuration. Additional to the well-known plasmonics bands, when we consider the in-
terband and intraband contribution of graphene's conductivity, and large wavevectors parallel to
graphene's plane, all plasmonic bands have an asymptotic behavior. Besides, an upper mode
emerges. Finally, it is important to highlight that the number of branches in the plasmonic re-
lation dispersion depend on the number of graphene sheets.

1. Introduction

Plasmonics studies the interaction between electromagnetic radiation and the conduction electrons at a metallic interface. As a
branch of nanophotonics, this field has a great interest because it takes advantage of the manipulation, control, and coupling of light
at subwavelength dimensions, enhancing the electromagnetic field confinement and also breaking the Abbe limit of diffraction [1–3].

Plasmons have been studied for decades; the first studies about plasmons came in late 1890 and early 1900 with the works of
Sommerfeld [4], Zenneck [5] and Wood [6], who studied the interaction between light and metallic media. On the other hand, it is
well known that collective excitation of free charge in metallic surfaces, i.e., surface plasmons (SP), can be coupled with the elec-
tromagnetic radiation as a surface plasmon polariton (SPP), and play a key role in a broad spectrum of science, ranging from physics
and material science to biology and medicine [2,7,8], and references therein. The term plasmon was coined by Ritchie in 1957 [9]
and since then it has been extensively studied due to its optical and electrical properties which allow to have diverse applications as
waveguides sources, near-field optics, data storage devices, solar cells, surface-enhancement Raman spectroscopy (SERS), chemical
sensors and biosensors, see Ref. [2] and references therein. Moreover, it is well known that a multilayer structure of metallic films
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embedded within dielectric materials, has a number of plasmon branches in its dispersion relation equal to the number of metallic
interfaces of the lattice [3].

The possibility of supporting plasmons in graphene has been investigated since 2006 by different research groups in several works
[10–47], where they study and discuss models for optical conductivity of graphene, as well as numerical and analytic calculations for
graphene structures embedded in different kind of materials. Experimentally, people have reported several investigations of the SPP
interaction phenomena for different systems and applications [16,19,30,38,40,43,45,48]. For example, S. Huang et al., studied the
plasmonic modes in the terahertz and mid-infrared region and discuss its localization and propagation. Additionally, they introduce
two experimental techniques: absorption spectroscopy and s-SNOM imaging, for detecting plasmons [45]. Xiao et al., report a review
work where they discuss the excitation of graphene plasmon polaritons, electron-phonon interactions in graphene on polar substrates,
and tunable graphene plasmonics [43]. Jamalpoor et al., introduce a method for coupling light into graphene plasmonic modes,
which consists of the use of nonlinear optics process [49]. Sreekanth et al., reported the fabrication of a graphene-based Bragg grating
and demonstrate the excitation of surface electromagnetic waves in the periodic structure using the prism coupling technique [48].
On other hand, Jablan et al. and Grigorenko et al., make an extensive discussion over graphene plasmon properties [19,30].

It is important to emphasize three features of graphene which permit us to consider it as an excellent 2D material candidate for
supporting plasmons and use it for different applications. Firstly, we know that the carrier mobility in graphene is high as compared
to other materials, which implicate low loss in comparison with traditional support plasmons materials. Secondly, graphene con-
ductivity is tunable, by controlling the Fermi level using electrostatic gating or chemical doping [10,32,50]. Finally, graphene
plasmons can show very strong light spatial confinement with in-plane propagation distances above 100 times the surface plasmon
wavelength [17].

In particular, the research group headed by Bludov [31] has studied the plasmonic modes both for TM and TE polarizations for
one and two doped sheets of graphene, showing the dispersion relation for his structure only in the far infra-red region. On the other
hand, in many works the authors refer to both intraband and interband contributions in graphene conductivity in their theoretical
section, however, in the numerical calculations, the results only show the intraband contribution, i.e., Drude-like conductivity is only
taken into account. It is important to highlight that the TE mode cannot be supported in a metallic-dielectric interface.

In this paper, we obtain and analyze numerically the dispersion relation for a graphene-dielectric multilayer system, which
consists of N encrusted graphene layers between +N 1 dielectrics, i.e., dielectric-graphene-dielectric structure. As can be expected,
we found that the number of plasmonic branches corresponds to the number of graphene sheets in the system. A significant difference
between our work and another graphene multilayer structures is that they only report systems with maximum two graphene sheets in
the TeraHertz and far-infrared regions and never show results for the interband contribution, where we found an upper mode for two
o more graphene sheets [19,27,31]. For one and two graphene sheets, we show the analytic relation dispersion, numerical calcu-
lations of Attenuated Total Reflection (ATR) spectra and we get the optimal distance between coupling prism with the multilayer
system to detect the surface polariton plasmons in the Otto configuration. Furthermore, we found that the plasmonic mode branches
tend to an asymptotic value of frequency ωspp, in the non-retarder limit for intraband contribution despite the number of graphene
sheets. We found that for two graphene sheets or more, the dispersion relation shows an upper mode for high frequency, which is
associated to the interband transition which, to our knowledge, it has not been reported before in the literature. For this high mode
and in the case of two graphene sheets, we demonstrate its asymptotic behavior derived from the analytic dispersion relation, and for
more graphene sheets is obtained via numerical calculations.

2. Theoretical model

In order to study the propagation of the electromagnetic waves in a layered media, we implemented a calculation method based in
the scheme of transfer matrix, (see Pochi Yeh and Markos [51,52]). As a graphene sheet is embedded between two dielectric media,
the corresponding boundary conditions for any interface are the continuity of the tangential electric field
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where ω is the frequency of light, e is the elementary charge, μg is the chemical potential, ℏ is the Planck constant over π2 , Γ is the
collision frequency and Θ the Heaviside function. Through this model, we obtained the reflection spectra, as well as the plasmonic
dispersion relation.
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2.1. Transfer matrix method

The transfer matrix method is very useful to calculate the propagation of different kind of waves, such as electromagnetic,
acoustic, massive electrons, Dirac electrons waves, through multilayer systems [51,52]. In this paper, we consider harmonic plane
waves with transverse magnetic polarization (TM), where the electric and magnetic fields are written as

→
=

→
=E E E H H( , 0, ), and (0, , 0).j jx jz j jy (2)

This electromagnetic field configuration and the proposed graphene-dielectric multilayer system are shown in Fig. 1, which
consists on N encrusted graphene layers between −N 1 different dielectrics, with relative permittivity εj of medium = …j N1,2,3, , .

The corresponding magnetic field for dielectric media j can be written as:
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Applying the corresponding boundary conditions on the different interfaces, we obtain the relation between magnetic fields for
the incident and transmitting media in the form of
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where dj is the physical thickness of j-th dielectric slab. Subscripts =j 0 and t correspond to incident and transmission media,
respectively. Furthermore, Gj is given by
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which we call conductivity matrix for the j-th graphene sheet with μg-j-th chemical potential. The introduction of the matrix G permit
us to maintain the Pochi-Yeh scheme for transfer matrix method [51] under a small modification. The transfer matrix for the

Fig. 1. Schematics of a multilayer graphene-dielectric system over a semi-infinite dielectric medium, for N graphene sheets embedded in different
dielectric media. Arrows correspond to the incoming and reflected plane waves (TM) that impinges on the multilayer surface. The dielectric
permittivities are represented by εj, with respective thicknesses of dj.
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complete system has the form:
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=
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Finally, the dispersion relation of plasmonic modes in the graphene-dielectric system is obtained from the poles of reflection via
=M 011 .

2.2. Plasmonic modes of one and two graphene layers

In the simplest case, a graphene layer is embedded between two dielectric media of relative permittivity ε0 and εt. For this system,
an analytic equation for the dispersion relation of graphene plasmonic modes was obtained by Bludov et al. [31], and it is entirely
equivalent to get the poles of reflection. The dispersion relation of a single graphene layer is given by
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where σ ω( ) and κzj are given by Eqs. (1) and (5), respectively. Real solutions of Eq. (10) are possible only if the imaginary part of
conductivity is positive. From Eq. (1), the Drude-like intraband contribution allows for the existence of a single plasmonic mode for
one graphene sheet. The interband contribution for this mode will be discussed in subsection 2.3.

When two graphene layers are embedded between three dielectrics media of relative permittivity ε0, ε1 and εt, previous works have
pointed out that the analytic equation for dispersion relation of graphene plasmonic modes can be obtained by

+ + + + =

− + − +−

( )( )
( )( )

e i i

e i i ,

κ d
κ κ

σ
ωε κ κ

σ
ωε

κ d
κ κ

σ
ωε κ κ

σ
ωε

ε ε ε ε

ε ε ε ε

z
z z z

t
tz

z
z z

t
tz z

1 1 0
0

1
1 0

1
1 0

1 1 0
0

1
1 0

1
1 0 (11)

where d1 is the separation distance between both graphenes, according to our notation (see Fig. 1), and the chemical potentials for the
two graphene sheets are the same [31].

When three or more graphene layers are considered in the multi-structure, obtaining the analytic equation for dispersion relation
of graphene plasmonic modes can be very cumbersome; therefore the corresponding transcendental equations must be numerically
solved. We propose to achieve this task by using the transfer matrix method through the poles of reflectance via =M ω q( , ) 0x11
solutions.

2.3. Asymptotic behavior and interband high frequency mode

We point out in Sec. 1, that many authors refer both intraband and interband contributions in graphene conductivity response,
however, when numerical calculations are shown, most of them only take into account the Drude-like intraband contribution. In this
section, we analyze the behavior of plasmonic modes for large wavevectors, ≫q ω c( / ) εx j , therefore ≈κ qjz x and rhs of Eq. (11) is
nearly zero. So, Eq. (11) is approximately
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As + + q(ε ε )/j j x1 is a non negative term, each independent term of Eq. (12) can be canceled only by a negative term which is
possible only if the imaginary part of conductivity is positive. Considering the complete graphene conductivity response as
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is non-negative, allowing for the existence of plasmonic modes for a large wavevectors regimen and it will remain for frequencies
below ωspp, where
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which is satisfied when ≅ω μℏ 1.6671spp g. The condition of Eq. (14) leads to an asymptotic behavior of plasmonic bands.
Now, we shall analyze the existence of an upper mode in the dispersion relation of the graphene-dielectric multilayer system. For
>ω μℏ 2 g, the real part of the interband contribution of graphene conductivity response does not vanish.
Taking the approximation of the dispersion relation, Eq. (12), it is necessary to satisfy simultaneously both real and imaginary

parts from the equation:
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Under ≫ω μℏ 2 g consideration, ′ ″σ σ| |/| | is greater than 1. Therefore, we only keep ′σ in the first condition of Eq. (15) as
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where ≈α 1/137 is the fine structure constant.
This linear equation explains the asymptotic behavior of an upper mode which we show and discuss in the next section.

3. Discussion and results

In order to study the plasmonic modes of a graphene-dielectric multilayer system, we propose the structure showed in Fig. 1. In
contrast with previous developed works by Zhan et al., and Bludov et al., where they only show the dispersion relation for one and
two graphene sheets [27,31], we show the general case for N graphene sheets. Additionally, the ATR in the Otto configuration was
calculated as a function of the incidence angle and frequency. Finally, we show that the number of branches in the dispersion relation
correspond exactly to the number of graphene sheets in the system, and for the interband region, a superior mode appears.

Fig. 2 shows the dispersion relation, the ATR spectra and the phase of the reflection coefficient (PCR) for one, two, and three
graphene sheets. The first, second and third rows correspond to =N 1, 2, 3, respectively. The first column corresponds to the
dispersion relation, the second (third) column display the ATR and PCR as a function of the energy (normalized incidence angle). The
parameters for the calculation were chosen as follows: =μ 0.45g eV and =Γ 0.1 meV. For one graphene sheet, =ε 10 , =ε 5t , and for

=N 2,3, = = =ε ε ε 1t j0 . The light line in Otto setup given by =k ω θ cε sin /p p p is indicated with the dashed line in Fig. 2. Here, θp is
the incident angle inside prism and εp its permittivity, where =ε 14p for the first row and =ε 20p for the second and third rows.
Intersections of this lines with the dispersion curves correspond to the coupling of the plane waves with the plasmonic modes, i.e., the
surface plasmon polaritons in the graphene sheets. The intersection energies for the SPP graphene modes are observed at 4.1 meV for

=N 1; 12.8 meV and 32.7meV for =N 2; and 11.7 meV, 26.4 meV, and 32.7 meV for =N 3 in the ATR spectra (middle column), with
θp angles fixed to be = ∘2.25 arcsin( 5/14 ) 82. 6 , = ∘6 arcsin( 1/20 ) 77. 5 and = ∘5.9 arcsin( 1/20 ) 76. 2 , for =N 1, 2 and 3 graphene
sheets, respectively. In the right column of Fig. 2 we show the ATR spectra as a function of the incident angle for fixed energy values

Fig. 2. Left column displays the dispersion relation of graphene SPP calculated for one (N=1), two (N=2) and three (N=3) graphene sheets.
Numerals Roman indicate intersection energies of light lines with the SPP branches. ATR spectra and the phase of the reflection coefficient (PCR) as
a function of the energy are displayed in the middle columns, for fixed angles (black and red lines, respectively). The right column shows the ATR
and the PCR as a function of the incident angle normalized to the critical angle (θc), for fixed energies (see text).
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of =ωℏ 4.1 meV, 12meV, and 14.6 meV, for =N 1, 2 and 3 graphene sheets, respectively. To keep the total reflection regimen, we
must choose <ε εj p, for any j, and incident angle must lie within the range ≤ ≤θ θ π/2c p . It can be clearly observed the ATR sharp
dips for the different number of graphene sheets, closed to the normal modes energy of SPP (second and third columns, respectively),
which allows for both spectral and angular SPP detection. On the other hand, it can be observed that PCR can give complementary
information to detect the SPP in graphene, i.e., in the second column we obtain more information about SPP from ATR spectra than
PCR, however, in the angular spectra (third column), it is clear that PCR generates a better response as compare to ATR spectra. This
behavior suggest that experimentally, the PCR can be employed as an additional technique to detect SPP in graphene due to its high
sensitivity [54–58].

In Fig. 3 we show in the first column the ATR contour plots of as a function of the energy versus distance from prism; in the second
column it is displayed the ATR contour plots as a function of the energy versus normalized incidence angle. The first, second and third
rows correspond to =N 1, 2, 3 graphene sheets, respectively. In particular, we can observe that the excitation of SPP can be tuned
around the vicinity of the energy or the incidence angle for the normal modes of SPP. Moreover, by selecting the adequate d0 or θp, we
can obtain the number of required branches. It is important to highlight that for large distances as well as for sub-micron distances, it
is impossible to couple energy to the multi-structure, there are not plasmon excitation in all cases. Therefore, there will be optimum
distances and incidence angles which enable us to detect the plasmonic modes. For instance, in the left colunm of Fig. 3 we can
observe that for =N 2 and =d 2.450 μm two branches can be detected, in contrast to =d 10 μm, where only one branch can be
detected. In the case of ATR angular resolved, the same procedure can be employed to detect one or two branches (see right column of
Fig. 3 for =N 2). As we increase the number of graphene-dielectric periods ( =N 3), it is observed an analogous behavior with the
number of branches. On the other hand, by fixing the energy of the incident light, superior modes for different distances are allowed,
where we can find coupling modes. We suggest that this behavior is due to light resonant inside the multilayer structure as we
observed by increasing the thickness of dielectric layers, where the superior mode is suppressed.

Now, we analyze the multilayer structure for =N 4, 6 and 10 graphene sheets suspended in air, i.e., =ε 1.0j , see Fig. 4. As can be
observed, the number of branches of the dispersion relation correspond with the number of graphene sheets; all branches arise from
the origin, and they stay in the right of the light line =q ω c( / )x . There is an intermediate region of qx where the plasmonic modes
interact stronger between them, producing a breaking of the initial degeneration of branches. However, when qx goes to infinity, the
modes degenerate again, because it implies that the wavelength is very small and therefore the coupling of the modes disappear. This
behavior can also be observed if we change the separation distance dj of graphene sheets. When dj is small the modes are not
degenerated, however when the distance is larger, the modes degenerate. An important aspect to highlight is the asymptotic value of

=ω μℏ 1.6671 g, where all the branches of graphene-dielectric multilayer converge as → ∞qx . This asymptotic value corresponds with
the energy of the surface plasmon supported by one graphene sheet, which has been demonstrated in Eq. (14).

Fig. 5 shows the dispersion relation for two and four graphene sheets including the energy upper to μ2 g, where the interband
contribution of graphene conductivity is predominant as compared to Drude contribution. It is well-known that optical and acoustic
branches are present below this region, as we discussed above. Additional to these bands, an upper branches emerges, as can be
observed in Fig. 5 for higher values of μ2 g.

We fix the separation dimensionless distance between graphenes as d μ c( /ℏ )g = × −5 10 3. For Fig. 5(a), all permittivities are =ε 1j ,
and for Fig. 5(b) we consider =ε 2.51 . We observe that the upper mode position can be modulated to higher values of qx wavevector as
dielectric permittivities of surrounding media change. We can explain this behavior throughout Eq. (18). The asymptotic slope limits
this upper mode and can be changed with the permittivities of surrounding media, showed as dashed line in Fig. 5(a) and (b). We

Fig. 3. Left column displays the contour plots of ATR spectra as a function of the frequency and the distance to the prism for one ( =N 1), two
( =N 2) and three ( =N 3) graphene sheets. Right column displays ATR spectra as a function of the frequency and the incident angle normalized to
the critical angle.
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confirm this upper bands with discrete numerical calculation via transfer matrix method of plasmonic modes, indicated with red
boxes. Using the analytic equation Eq. (11), we get the solid black line for the case =N 2.

Upper mode for a graphene-dielectric multilayer system with three or more graphene sheets remains, and it is possible to obtain
additional upper branches. For Fig. 5(c), we consider four graphene sheets, and all permittivities are equal to =ε 1j , while for
Fig. 5(d) we choose = =ε ε 1t0 , = =ε ε 1.51 3 , and =ε 2.52 . In both cases, we find two upper modes and they can be modulated by
modifying the dielectric constants of media where graphene sheets are embedded. The asymptotic behavior of this upper modes
remains too. The upper modes for ≥n 3 can only be obtained using numerical calculation. To get an analytic close form of these
upper modes can be a cumbersome process.

From the dispersion relation obtained in Fig. 5, for upper modes, there will be a propagating mode with positive group velocity. In
contrast, for the region close to ≈ω μℏ 2 g, the upper modes have zero nearly negative group velocity. Each upper mode have
different asymptotic slope.

Finally, it is important to highlight that upper modes only appear when the interband contribution of conductivity is taken into
account.

Fig. 4. Dispersion relation of graphene SPP calculated for four (N=4), six (N=6) and eight (N=8) graphene sheets. An asymptotic value of
=ω μℏ 1.6671 g is shown in blue line, where all the branches of graphene-dielectric multilayer converge.

Fig. 5. Dispersion relation showing the upper and lower modes for two (panels (a) and (b)) and four (panels (c) and (d)) graphene sheets, con-
sidering the intra and interband contributions of graphene conductivity. Optical and acoustic bands are bounded by the energy =ω μℏ 1.667 g. The
upper modes have an horizontal asymptotic value =ω μℏ 2S g (dashed-dotted line) and for N=2, asymptotic slope (dashed line). Discrete numerical
calculation via transfer matrix method of plasmonic modes are indicated with red boxes and black solid line is obtained using the analytic equation
(11). Left column corresponds to =ε 1j and = × −dμ c/ℏ 5 10g

3, right column we change =ε 2.52 , and =ε 1.51,3 (see text).
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4. Conclusions

We used the transfer matrix method to calculate numerically the dispersion relation for a graphene-dielectric multilayer system.
First, for one, two and three graphene-dielectric sheets we obtain the dispersion relation, and we get ATR spectra, the optimum
distance and optimum incident angle to coupling a prism with the multilayer system for detecting the surface plasmon polariton dips
in the Otto configuration. We observed that the number of plasmonic branches correspond to the number of graphene sheets in the
system for < <ω μ0 ℏ 2 g energy range. In all calculations, we took into account both inter and intraband contributions of graphene
conductivity response, and for large wavevectors parallel to graphene plane, we found that all plasmonic bands tend to the
asymptotic value of energy =ω μℏ 1.6671spp g, in the non-retarder limit, independent of the number of graphene sheets. We found that
for two graphene sheets or more, the dispersion relation shows an upper mode for high frequency associated to interband transition
which, to the best of our knowledge, has not been reported before in the literature. For this upper mode for two graphene sheets, we
analyzed its asymptotic behavior derived from the analytic dispersion relation.
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