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ABSTRACT
The lack of bandgap in graphene is the main factor that prevents that this outstanding material be implemented in optoelectron-
ics. In this work, we show that by nanostructuring graphene aperiodically it is possible to have an efficient transmission bandgap
engineering. In particular, we are considering aperiodic graphene superlattices in which electrostatic barriers are arranged fol-
lowing the basic construction rules of the Thue-Morse sequence.We find that the transmission bandgap can bemodulated readily
by changing the angle of incidence as well as by appropriately choosing the generation of the Thue-Morse superlattice. Even, this
angle-dependent bandgap engineering is more effective than the corresponding one for periodic graphene superlattices.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5081750

I. INTRODUCTION

Graphene1,2 is a material with surprising and unique
properties that no other material offers, to such degree, that it
is regarded as a miracle material. The countless possible uses
and technologies that can come from it have been grouped in
the so-called graphene roadmaps.3,4 In particular, the excep-
tional electrical conductivity makes that we can think in a
possible graphene electronics. However, the lack of bandgap
hampers this possibility. In fact, the special band structure
of graphene which is closely related to its exotic, unique and
unprecedented properties is at the same time the biggest hur-
dle for electronics. To circumvent this problem there are sev-
eral proposals. Here, we will summarized the most important
ones.

A bandgap engineering is possible by patterning graphene
in finite pieces, known as nanoribbons.5,6 The lateral con-
finement of the charge carriers induces a bandgap. The size
of the energy bandgap scales inversely with the nanoribbon
width. The bandgap is also sensitive to the ribbon edges.5
Despite the advances in the control of ribbon edges,7 the size

of the bandgap (⇠ 100 meV) as well as the mass production of
reliable nanoribbons are the main obstacles of this proposal.
Another possibility is to induced a bandgap via the interaction
of graphene with substrates like SiC or hBN, in the range of 50
to 260 meV.8,9 However, the substrate degrades considerably
the mobility of the charge carriers. In particular, the greater
the bandgap the lower the carriers mobility. An alternative
for bandgap opening is the hydrogenation of graphene.10,11
In fact, it is experimentally reported12 that patterned hydro-
gen absorption induces a considerable bandgap, 450 meV. The
absorption is mediated by the graphene/Ir(111) Moir super-
lattice. Furthermore, the bandgap owes its existence to the
confinement effect that takes place between the covered and
uncovered hydrogen regions. Under this context, options in
which the bandgap can be tuned readily by applying exter-
nal electric fields are always welcomed. This can be achieved
with electrically gated bilayer graphene.13,14 This technique
allows the continuousmodulation of the bandgap, from 0 up to
250 meV. In this case, the bandgap owes its origin to the
symmetry breaking between the graphene layers due to the
applied electric field. By gating it is also possible to take
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advantage of the highly anisotropic propagation of the
charge carriers in the so-called gated graphene superlattices
(GSLs).15,16 So, we can think in an angle-dependent bandgap
engineering in gated graphene superlattices.17 In this case,
the bandgap can be tuned by modulating the angle of the
incident electrons. The bandgap has a parabolic dependence
for moderate angles, and a exponential variation for large
ones. Furthermore, the bandgap can be tuned from meV to
eV. In principle, the manipulation of the propagation of the
charge carriers at angular level is challenging, however nowa-
days there are important advances in the angular control of
the charge transport.18,19 Here, it is important to mention
that the base for this angular-dependent bandgap engineering
are periodic superlattices. However, an extra dimension can
be incorporated through the aperiodic order that superlat-
tices based on sequences like Fibonacci, Thue-Morse, Cantor,
etc. offer. In fact, aperiodicity induces special characteristics
on the band structure and transport properties of Fibonacci
and Thue- Morse superlattices.20–22 So, the highly anisotropic
propagation of charge carriers in graphene and aperiodicity
open the possibility for an angle dependent aperiodic bandgap
engineering.

In this work, we propose a bandgap engineering based on
the angular dependence of the propagation of Dirac electrons
in aperiodic Thue-Morse graphene superlattices (TM-GSLs).
We find that the transmission bandgap can be modulated
by changing the angle of incidence as well as by appropri-
ately choosing the generation of the Thue-Morse superlat-
tice. Even, this angle-dependent bandgap engineering is more
effective than the corresponding one for periodic graphene
superlattices (Periodic-GSLs).17

II. MODEL AND METHOD
Our object of study is an aperiodic graphene superlat-

tice that obeys the construction rules of the Thue-Morse
sequence. Namely, g(A) = AB and g (B) = BA. For us A and
B represent a quantum well and barrier, respectively. Then,
by applying these rules we can obtain a series of barriers
and wells that will represent the generations of our system.
For instance, with A as generation zero, generations one,
two and three become AB, ABBA and ABBABAAB. At exper-
imental level, in principle, this structure can be obtained
by placing a graphene sheet on substrates like SiO2 or
hBN and by depositing top gate electrodes in Thue-Morse
fashion.23,24

In Fig. 1a we show the schematic representation of the
possible device for the fourth generation (N = 4) of the Thue-
Morse graphene superlattice. By applying voltages to the top
gates we can generate-modulate the height (V0) and width (dB)
of the potential barriers. The regions between potential bar-
riers correspond to quantum wells of width dW . As the main
effect of the voltages on the top gates is to shift the Dirac
cones, the band edge profile of the conduction band can be
modeled as an aperiodic arrangement of potential barriers and
wells, abrupt potential model, which in turn results in mini-
bands and gaps that strongly depend on the electron angle of
incidence, see Fig. 1b.

FIG. 1. (a) Schematic representation of the possible device for Thue-Morse
graphene superlattices. The graphene sheet is placed on a non-interacting sub-
strate like SiO2 and top gates are deposited in Thue-Morse fashion. (b) As the
main effect of gating is to shift the Dirac cones, the band-edge profile of the con-
duction band can be modeled as a series of abrupt potential barriers and wells.
The device structure and the band-edge profile correspond to the fourth genera-
tion (N = 4) of the Thue-Morse superlattice. dW , dB and V0 represent the width of
wells and barriers and the height of barriers, respectively.

The transmission properties of this system can be com-
puted directly using the transfer matrix approach.25,26 The
basic information needed to apply this methodology is the
dispersion relation, wave vectors and wave functions in the
barrier and well regions as well as in the left and right semi-
infinite regions. In the well and semi-infinite regions, the dis-
persion relation is E = ±~vFk and the wave functions come
as:

 ±k =
1p
2

 
1
u±

!
e±ikxx+ikyy, (1)

where vF is the Fermi velocity, k is the magnitude of the wave
vector in these regions, kx and ky are the longitudinal and
transversal components of k, and u± = sgn(E)e±i✓ the coeffi-
cients of the wave functions that depend on the angle of the
impinging electrons, ✓ = arctan(ky/kx).

The eigenenergy associated with the barrier region q
takes the form E � V0 = ±~vFq and the eigenfunctions as,

 ±q =
1p
2

 
1
v±

!
e±iqxx+iqyy, (2)

where V0 is the strength of the electrostatic potential, q is the
magnitude of the wave vector in the barrier regions, qx and qy
are the components of q, and v± the coefficients of the wave
functions.

By imposing the continuity of the wave function at the
different boundaries between barriers and wells as well as the
conservation of the transverse momentum qy = ky, we can
obtain the transfer matrix of the structure.25,26 For instance,
for generation 4 the transfer matrix is given as

M = MWM2
BMWMBM2

WM2
BM

2
WMBMWM2

BMW , (3)

with MW and MB the transfer matrices of the wells and barri-
ers, respectively. In fact, these matrices come in terms of the
so-called dynamic and propagations matrices D0is and Pis,27,28

MW = D�1WPWDW , (4)

AIP Advances 9, 015130 (2019); doi: 10.1063/1.5081750 9, 015130-2

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

MB = D�1B PBDB. (5)

The transmittance of the Dirac electrons through the
Thue-Morse superlattice can be computed with the (1,1) ele-
ment of the transfer matrix,

TN(E, ✓) =
1

|M11 |2
. (6)

Here, N denotes the generation of the TM-GSL.

III. RESULTS
In order to unveil the fundamental differences between

the angle-dependent bandgap engineering of aperiodic and
periodic graphene superlattices we will calculate the trans-
mission properties of TM-GSLs for specific generations and
the corresponding ones for Periodic-GSLs, taking care that
number of barriers in both systems be the same.

In Fig. 2 we present the transmittance for the fifth (N = 5)
and seventh (N = 7) generation of TM-GSLs. As the num-
ber of barriers NB scales as 2N�1, the mentioned generations
have 16 and 64 barriers. Periodic-GSLs have been chosen such
that the periods (barriers) correspond to precisely these num-
bers. Likewise, the superlattice parameters, for all cases in
Fig. 2, are the same: V0 = 1.0 eV, dB = dW = 10a, and ✓ = 30�.
Here, a represents the carbon-carbon distance in graphene,
with a value of a = 0.142 nm. As we can see the aperiodic
order changes notably the transmission characteristics. Two
main modifications are introduced with the Thue-Morse ape-
riodicity. First, the width and number of resonances in the
minibands are greatly reduced. For instance, the well-defined
minibands of Periodic-GSLs at about 1 and 2 eV collapse to a
bunch of resonances when the aperiodicity is incorporated,
compare the red and blue curves in Fig. 2a. By increasing

FIG. 2. Transmittance vs Energy for TM-GSLs with (a) N = 5 and (b) N = 7. As
reference, the transmittance of Periodic-GSLs has been included, gray curves.
The angle of incidence considered is ✓ = 30�. The superlattice parameters are:
V0 = 1.0 eV and dB = dW = 10a. With the carbon-carbon distance in graphene,
a = 0.142 nm. The number of barriers in the aperiodic and periodic superlattices is
the same.

FIG. 3. The same as in Fig. 2, but here the angle of incidence is 45�.

the generation of TM-GSLs the mentioned bunch becomes a
sharp resonance at the center of the minibands, see Fig. 2b.
Second, several resonances are induced in the transmis-
sion gaps of the Periodic-GSLs. This characteristic is asso-
ciated to the predominant random character of Thue-Morse
superlattices.29 With N these gap resonances cluster in nar-
row minibands that modifies totally the transmission land-
scape. These gap resonances also impede that we can define
the main transmission bandgaps as simple as in the case of
Periodic-GSLs.17 However, by increasing the angle of inci-
dence we can swept (eliminate) most of the gap resonances
giving rise to a huge transmission bandgap. In particular,
with a moderate increase of 15�, we obtain a transmission
bandgap four times greater than the corresponding one for
Periodic-GSLs, see Fig. 3. We can also notice remaining

FIG. 4. Transmittance as function of the energy and the angle of incidence for (a)
TM-GSLs and (b) Periodic-GSLs. The left and right panels correspond to N = 5
and N = 7. The height of the barriers and the widths of barriers and wells are the
same as in Fig. 2 and 3.
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FIG. 5. The same as Fig. 3 ((a) ✓ = 45� and (b) ✓ = 55�)
and Fig. 4a (c), but here N = 8.

resonances at the center of the minibands and bandgaps
of the Periodic-GSL. The former persist regardless of the
generation (Fig. 5a) and the latter can be diminished by
increasing the angle of incidence (Fig. 5b). Actually, these
well-localized resonances are quite interesting for sensor
applications.

In Fig. 4 we show the transmittance as a function of the
energy and the angle of incidence for (a) TM-GSLs and (b)
Periodic-GSLs. This figure allows us to have a broader picture
of the transmission properties. From this figure, it is clear that
the well defined minibands of Periodic-GSLs, semi-circular
black regions, are greatly affected when the Thue-Morse ape-
riodicity is incorporated. In fact, the low-energyminibands are
distorted and eventually destroyed as the angle of incidence
increases. This gives rise to transmission gaps of 1-4 eV in the
angular range of 25�-50�. As reference see the orange rectan-
gle in Fig. 4. For angles greater than 50� there is practically
no difference between aperiodic and periodic GSLs. The cor-
responding results for N = 8 are shown in Fig. 5b. As we can
see the fragmentation and diminishing of the transmittance
is covering most of the energy range shown. So, the aperi-
odic order can be used as an additional parameter to tune
the angle-dependent bandgap engineering in gated graphene

superlattices. In particular, aperiodicity gives access to trans-
mission bandgaps that are not achievable with Periodic-GSLs
and provides well-localized resonances that can be exploited
in optoelectronic sensors.

IV. CONCLUSIONS
In summary, we have studied the angle-dependent

bandgap engineering in TM-GSLs. This bandgap engineering is
based on the angular dependence of the propagation of Dirac
electrons in graphene superlattices. Specifically, transmission
minibands and gaps can be formed at different energy ranges
depending on the angle of the incident electrons. We find that
the formation and size of the different gaps at different angles
of incidence is notably more efficient in TM-GSLs than in peri-
odic GSLs for the same number of barriers. In particular, this
bandgap engineering is more effective in the angular range
of 25 to 50 degrees, while for other angles there is practi-
cally no qualitative difference between periodic and aperiodic
GSLs. Another notable property of TM-GSLs is the existence
of well localized states in the transmission gaps. These states
may be of great interest for the development of optoelectronic
sensors.
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