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a b s t r a c t

The process of unfolding the neutron energy spectrum has been subject of research for many years.
Monte Carlo, iterative methods, the bayesian theory, the principle of maximum entropy are some of the
methods used. The drawbacks associated with traditional unfolding procedures have motivated the re-
search of complementary approaches. Back Propagation Neural Networks (BPNN), have been applied
with success in neutron spectrometry and dosimetry domains, however, the structure and learning
parameters are factors that highly impact in the networks performance. In ANN domain, Generalized
Regression Neural Network (GRNN) is one of the simplest neural networks in term of network archi-
tecture and learning algorithm. The learning is instantaneous, requiring no time for training. Opposite to
BPNN, a GRNN would be formed instantly with just a 1-pass training on the development data. In the
network development phase, the only hurdle is to optimize the hyper-parameter, which is known as
sigma, governing the smoothness of the network. The aim of this work was to compare the performance
of BPNN and GRNN in the solution of the neutron spectrometry problem. From results obtained it can be
observed that despite the very similar results, GRNN performs better than BPNN.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Neutron spectrometry is not a trivial problem. The derivation of
the spectral information is hard because the unknown is not given
directly as result of measurements. The derivation of the spectral
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information is an ill-posed problem (Vega-Carrillo et al., 2005), it
is derived through the discrete version of the Fredholm integral-
differential equation of first type (Thomas, 2004). The system of
equations that derives the spectral information have no explicit
solution, and may have no unique solution. Normally, researchers
solve a discrete version of this equation, which gives an ill-con-
ditioned system of equations (Thomas and Alevra, 2002).

Since 60's years, the Bonner Sphere Spectrometer (BSS) has
been the most widely used method for radiological protection
purposes (Bonner, 1961). The isotropy of the response, the wide
energy range (from thermal to GeV neutrons) and the easy op-
eration make these systems still applicable (Thomas and Alevra,
2002). BSS consists of a thermal neutron detector located at the
center of several high density polyethylene spheres of different
diameters (Alevra et al., 1992). By measuring the count rate of each
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sphere individually, an unfolding process can, in principle, provide
some information about the energy distribution of the incident
neutrons (Matzke and Weise, 1985a).

However, the most delicate part of neutron spectrometry based
on BSS is the unfolding process (Matzke, 2003). The unfolding
spectrum of the measured neutrons consist on establishing the
rate of energy distribution of fluency, known as response matrix,
and the group of measures carried out (Lferde et al., 2004). Be-
cause the number of unknowns overcome the number of equa-
tions, this ill-conditioned system has an infinite number of solu-
tions (Vega-Carrilo et al., 2006). The process of selecting a mean-
ingful solution for the problem is part of the unfolding process.

To solve the system of equations for BSS unfolding, several
approaches have been used: iterative procedures (Miller, 1993;
Hertel et al., 2002), Monte Carlo methods (Matzke and Weise,
1985b; Sanna and O'brien, 1971), regularization and maximum
entropy methods (Goldagen et al., 2002). However, the drawbacks
associated with these traditional unfolding procedures have mo-
tivated the research of complementary approaches. Novel meth-
ods based on Artificial Intelligence (AI) have been suggested
(Kardan, et al., 2003; Braga and Dias, 2002; Freeman et al., 1999;
Vega-Carrillo et al., 2005; Vega-Carrilo, et al., 2006; Vega-Carrillo
et al., 2007, 2009a, 2009b, 2009a, 2009b, 2010).

In neutron spectrometry, the theory of Artificial Neural Net-
works (ANN) has offered a promising alternative to the classic
calculations over traditional methods (Vega-Carrillo et al., 2005,,
2007, 2009a, 2009b, 2009a, 2009b, 2010; Vega-Carrilo et al.,
2006). Neural networks are large structured systems of equations
(Galushkin, 2007; Arbib, 2003; Mehrotra et al., 1997; Graupe,
2007; Dreyfus, 2005; Fausett, 1993). These systems have many
degrees of freedom and are able to adapt to the task they are
supposed to do (Gupta et al., 2003). Generally, there are two very
different types of neural networks: Back-Propagation Neuronal
Networks (BPNN) and Probabilistic neural networks (PNN)
(Huang, 1999; Mao et al., 2000; Chtioui et al., 1997).

BPNN have been the most popular networks used in neutron
spectrometry (Braga and Dias, 2002; Kardan et al., 2003; Sara
et al., 2006; Vega-Carrilo et al., 2006; Vega-Carrillo et al., 2010,
2009a, 2009b, 2009a, 2009b, 2007,, 2005). BPNN use equations
that are connected using weighted factors. The selection of this
factors make these neural networks so powerful. However, BPNN
uses methods that are not based on statistical methods and take
long time, many iterations and feedbacks until it gradually ap-
proaches the underlying function (Chtioui et al., 1997). The
learning of BPNN can be described as trial and error. This is no
longer the case of the PNN. The experience is learned not by trial
but by experience others made for the neural network (Zhao et al.,
2002).

PNN use a statistical approach in their prediction algorithm
(Zhao et al., 2002; Mao et al., 2000) (Huang, 1999). The bases for
the statistical approach are given in the Bayes strategy for pattern
classification (Specht et al., 1991; Specht and Donald, 1992; Specht
et al., 1994; Specht and Donald, 1990,, 1988). These strategies can
be applied to problems containing any number of categories as in
the case of the neutron spectrometry problem. To be able to use
the Bayes strategy is necessary to estimate the probability density
function accurately. The only available information to estimate the
density functions are the training samples.

Opposite to BPNN, PNN use statistical methods to select the
equations within the structure and do not weight these functions
differently. The Bayes strategy for pattern classification, in which
PNN is based, extracts characteristics from the training samples to
unfold the knowledge about the underlying function.

The aim of this work, was to compare the performance of BPNN
and PNN architectures aiming to solve the neutron spectrometry
problem. Results obtained shows that the two architectures solve
the neutron spectrometry problem well, with high performance
and generalization capabilities, however, Generalized Regression
Neural Network (GRNN) outperform BPNN, mainly because GRNN
does not produce negative values and oscillations around the
target value.
2. Materials and methods

An ANN is a network of simple processing nodes, which is
roughly modeled on the human brain (Cheng et al., 1994; Haykin,
2004). ANN consists of a number of nodes, each of this nodes can
be thought of as neuron representation (Arbib, 2003; Hornik,
1989). Typically, the network is arranged such that one layer is the
input layer, which receives inputs that are yet to be classified
(Fausett, 1993). These inputs activate some of the neurons in the
input layer, then, those neurons pass signals to the connected
neurons, afterwards, the process is repeated in the next layer . In
this way, a complex pattern of activations is arranged throughout
the network, with final result being that some neurons in the final
output layer activate (Dreyfus, 2005).

The connection between neurons are weighted, and by mod-
ifying these weights, the neural network can be arranged to per-
form extremely complex classification tasks such as handwriting
analysis (Rehman, 2014), face recognition (Graupe, 2013) or to
solve the neutron spectrometry problem.

2.1. Back-propagation neural networks

BPNN consist of neurons organized in one input layer, one
output layer and several hidden layer of neurons (Apolloni et al.,
2009). Neurons perform some kind of calculation. They use inputs
to compute an output that represent the system (Mehrotra et al.,
1997). The outputs are then passed to a connecting neuron (Ga-
lushkin, 2007). A line indicates to which neuron the output is
connected. These lines carry synaptic weights.

Fig. 1 shows the structure of a BPNN. The input vector consists
of variables that are used to predict the desired output (that solves
the problem being analyzed). The inputs could be for example, the
rates count measured with the BSS and the outputs could be the
unfolded neutron spectrum.

As can be observed from Fig. 1, the information is given on to
the next neuron. Each neuron receives signals coming from n
neurons of the mj�1 layer, where mj is the current layer. Each
signal is weighted as it is given from the input layer to the first
hidden layer. As the new signals reaches a connecting neuron in
the hidden layer, all the signals are received by the neuron and are
summed up. This process can be seen as a multiplication vector of
the weights vector w and the signal vector yprevious of the previous
layer. In the hidden layer new signals are computed and given on
to the next hidden layer. This process continues until the output
layer is reached (Fig. 2).

The previous process in the neural network is repeated. The
values of the signals along with weights will be different but the
process itself will continue similarly. The signals are weighted and
then summed up, they cause a reaction of the neuron and the
reaction, which is the new signal, will be given on to the next
neuron.

The last step is to give the signal to the output layer. The output
layer can consist of one or more neurons. More neurons mean that
the plane of the neural network has multiple outputs. In the
output neuron a calculation is necessary to yield a value that is not
normalized in order to have a physical meaning.

One characteristic of BPNN is that they are very flexible. They
can be used to solve different problems. Another advantage is that
the process is highly parallel, however, BPNN have some



Fig. 1. BPNN architecture.

Fig. 2. GRNN architecture.
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drawbacks (Ortiz-Rodriguez et al., 2006; Martinez-Blanco et al.,
2006). The structural and learning parameters of the network are
often determined using the trial an error technique. This produce
networks with poor performance and low generalization cap-
abilities affecting the application of the trained networks in real
applications. The training stage can be time consuming in order to
gradually approach good values of the weights. The size of the
training data has to be very large, thus, often it is almost im-
possible to provide enough training samples as in the case of the
neutron spectrometry problem. Another drawback is that adding
new information requires retraining the network and this is
computationally expensive for BPNN but not for PNN (Chtioui
et al., 1997). PNN have the big advantage that the prediction al-
gorithmworks with only few training samples (Specht et al., 1991).
Other big advantage is that they are very flexible and new in-
formation can be added immediately with almost no retraining.

The learning of BPNN can be described as trial and error. A
GRNN has certain differences compared to an BPNN approach
(Specht and Donald, 1992). The experience is learned not by trial,
is learned by experience others made for the neural network. The
biggest advantage is the fact that the probabilistic approach works
with one-step-only learning.

2.2. Generalized Regression Neural Networks

GRNN belong to PNN classification. These neural networks use
a statistical approach in their prediction algorithm (Specht and
Donald, 1990,, 1988,, 1992). The bases for the statistical approach
are given in the Bayes strategy for pattern classification. These
strategies can be applied to problems containing any number of
categories as in the case of the neutron spectrometry problem. In
order to use the Bayes strategy, it is necessary to accurately esti-
mate the probability density function (PDF) (Specht and Donald,
1992). The only available information to estimate the PDF are the
training samples. The structure of the calculations for the prob-
abilistic density function has striking similarities to BPNN.

The general structure of GRNN (Zhao et al., 2002) consists of;
one input layer and two hidden layers. The first hidden layer
contains the pattern units. Each pattern unit represents informa-
tion on one string sample. Each pattern unit calculates the prob-
ability on how well the input vector fits into the pattern unit. In
the second hidden layer there is only one summation unit. Here it
is decided upon the individual results of each pattern unit in
which pattern the input vector finally belongs. The output unit
performs again a calculation to give the output which is physically
meaningful.

A further difference that exists between BPNN and GRNN is the
difference in the process inside the neurons (Zhao et al., 2002;
Specht et al., 1991; Specht and Donald, 1988). A GRNN use func-
tions that are based on knowledge resulting from the Bayes
strategy for pattern classification. The strength of a probabilistic
neural network relay in the function that is used inside the
neuron.

In this work, a comparison of the performance obtained in the
solution of the neutron spectrometry problem using two different
neural network architectures, BPNN and GRNN, is presented. Both,
BPNN and GRNN, were trained and tested using the same in-
formation: two hundred and fifty-one neutron spectra, extracted
from IAEA's compilation. 80% of the whole data set was randomly
selected as a training set, the remaining 20% was used as a testing
set. 50 neutron spectra were used as testing data set.

The architectural and learning parameters of the PBNN were
optimized using a statistical methodology known as Robust Design
of Artificial Neural Networks Methodology (RDANNM) (Ortiz-Ro-
driguez et al., s.f.). In GRNN the only parameter determined was
the spread constant value, known as sigma. Customized scientific
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computational tools were used for the training, testing, analysis
and storing of the information generated in the whole process.
From results obtained it can be observed that despite two net-
works architectures shown very similar performance and gen-
eralization capabilities, GRNN perform better than BPNN in the
solution of the neutron spectrometry problem. BPNN produce
negative values and high oscillations around the target values,
which makes this type of network not useful in the solution of the
problem mentioned.
3. Results

By using the RDANNM, 50 different network architectures were
trained in an average of 150 min, before the selection of the near
optimum architecture. By testing different network architectures
according RDANNM, each network was trained in 50E3 epochs and
180 s average, stopping the training when the network reached
the established mean square error (mse) equal to 1E-4, value used
to measure the network performance. After selecting the near
optimum architectural and learning parameters of the BPNN, the
network was trained and tested using the following values: one
hidden layer with 10 neurons, a trainscg training algorithm and a
learning rate and momentum equal to 0.1 and 0.01 respectively, a
detail description is presented in Table 1.

Opposite to BPNN, the spread constant (sigma) was the only
value determined in GRNN. Using the same training and testing
data sets used for BPNN, 2000 neural networks were trained in an
average of 154 s, in order to determine the spread constant equal
to 0.2711. Each GRNN was trained in 0.058 s average in only one-
step-only learning.

Table 1 shows the obtained values after training the two net-
works architectures being compared in this work. As can be seen,
when the trial-and-error technique is used it is very difficult to
determine if the performance of the network is good or bad,
mainly because is not used a scientific and systematic methodol-
ogy for determining the near optimum learning and architectural
values as when RDANNM is used.
Table 1
Comparison between BPNN and GRNN values in neutron spectrometry.

Network
parameters

BPNN [trial and
error]

BPNN
[RDANNM]

GRNN

Networks tested be-
fore training

Undetermined 50 in 150 min 2000 in 154 s

Hidden layers Undetermined 1 Fixed
architecture

Neurons in hidden
layer

Undetermined 10 According input

Training algorithm Undetermined Trainscg Statistical
methods

Learning rate Undetermined 0.1 –

Momentum Undetermined 0.01 –

Spread constant – – 0.2711
Performance [mse] Undetermined 2.12E-4 2.48E-4
Training time [s] Several hours 170.40 0.058
Epochs Often millions 50E3 1
Best Chi-square test
BPNN

2.3525 0.049

Statistical margin
34.7

Best Correlation test
BPNN

0.9928 0.99571

Statistical margin 1
Worst Chi-square
test BPNN

0.44704 0.3223

Worst Correlation
test BPNN

0.2926 0.46023
As is shown in Table 1, after training both network archi-
tectures, BPNN optimized using RDANNM and GRNN, the perfor-
mance measured by mse reached by the two networks is very
similar between both strategies. In BPNN networks, the mse is a
value optimized by the network designer using RDANNM, in a
GRNN network the value is automatically obtained by the network
based on the training information. Said differences, demonstrates
the powerful of RDANNM in the optimization of the near optimum
values of BPNN architectures.

Fig. 3 shows that at testing stage, the chi-square and correlation
tests are very close in both, BPNN and GRNN network archi-
tectures. The same 50 neutron spectra were used for testing the
two networks. At testing stage, only the count rates were fed to
the trained networks. The output produced by the networks was
compared with the expected neutron spectrum taken from IAEA's
compilation by means of chi-square and correlation tests. In the
trained networks, two spectra are above the statistical margin of
the chi-square test. In correlation tests, both BPNN and GRNN
obtained 0.2926 and 0.46023 respectively. This shows the high
performance of the networks.

As can be seen from Fig. 3, the 50 chi-square and correlation
tests of trained networks are very similar. In both cases the aver-
age value is around 0 and 0.8 respectively, which is near of the
optimum values equal to 0 and 1. This demonstrate the high per-
formance of BPNN and GRNN, generalization capabilities, and
demonstrates the effectiveness of the RDANNM in the design of
near optimum architectures of BPNN.

As before mentioned, 50 neutron spectra were randomly se-
lected at testing stage. The same training and testing data sets
were used to train and to test the performance and generalization
capabilities of the networks. The best and the worst cases for both,
BPNN and GRNN, are showed in Figs. 4–7. Figs. 4 and 5 show the
best cases observed at testing stage for BPNN and GRNN respec-
tively. From these figures it can be observed that the chi-square
test for both, BPNN and GRNN, are 2.3525 and 0.0490 respectively,
the correlations for BPNN and GRNN are 0.9928 and 0.99571 re-
spectively, which means that the compared neutron spectra are
very similar.

As can be appreciated in Figs. 4–7, despite the good results
obtained with BPNN, one drawback is that the calculated neutron
spectra produce negative values, said values have no meaning in
real problems. These negative values are eliminated from the
output produced by the network, however, when the BPNN is
applied in real workplaces, Due the training received, the network
tends to produce negative values and oscillations around the tar-
get value. GRNN networks do not produce these negative values
and oscillations, therefore the performance is better than BPNN in
the solution of the neutron spectrometry problem.

Figs. 6 and 7 show the worst case observed at testing stage for
BPNN and GRNN networks respectively. As can be seen from these
figures both, BPNN and GRNN, selected the same neutron spectra
as the worst. This could be because the 50 energy bins that the
neural networks calculate, 49 values are very similar and only one
value is far from the expected target value, this causes that the chi-
square and correlation tests produce low values. From Figs. 6 and 7
can be observed that in the GRNN architecture the output is closer
than the target values of the neutron spectra when compared with
BPNN. This shows that in the worst case, GRNN outperformance
BPNN.
4. Discussion

Statistical methods tend to emphasis on the structure of the
data. For neural network methods the structure of the data is
secondary. Therefore, the amount of data needed for statistical



Fig. 3. Chi-square and correlation tests comparison for BPNN and GRNN.

Fig. 4. Best chi-square and correlation tests obtained with BPNN.

Fig. 5. Best chi-square and correlation tests obtained with GRNN.
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methods is a smaller than the amount of data needed for ANN
approaches.

Most methods are asymptotically good, nevertheless most of
them have severe drawbacks as well. BPNN need a large number of
training samples and the weights refinement is time consuming.
Adding of new information requires retraining and this is com-
putationally expensive for BPNN but not for PNN. PNN have the big
advantage that the prediction algorithm works with only a few
training samples. Other advantage is that they are very flexible and
new information can be added immediately with almost no
retraining.

PNN use a statistical approach in their prediction algorithm.
The bases for the statistical approach are given in the Bayes
strategy for pattern classification. These strategies can be applied
to problems containing any number of categories as in the case of
the neutron spectrometry problem. To be able to use the Bayes
strategy it is necessary to estimate the probability density function
accurately. The only available information to estimate the density



Fig. 6. Worst chi-square and correlation tests obtained with BPNN.

Fig. 7. Worst chi-square and correlation tests obtained with GRNN.
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functions are the training samples.
The structure of the calculations for the PDF has striking si-

milarities to a back-propagation feed-forward neural network.
PNN are frequently used to classify patterns based on learning
from examples. PNN algorithm uses the Bayes strategy for pattern
classification. Different rules determine patterns statistics from the
training samples. BPNN uses methods that are not based on sta-
tistical methods and need a long time to compute and many
iterations and feedbacks until it gradually approaches the under-
lying function. It would be desirable to approach the parameters in
one-step-only approach. The Bayes strategy for pattern classifica-
tion extracts characteristics from the training samples to come to
knowledge about underlying function.
5. Conclusions

In this work, two different Artificial Neural Networks archi-
tectures, BPNN and GRRN, were trained and tested using the same
information. The performance of the networks was compared.
From results obtained it can be observed that GRNN perform
better than BPNN in the solution of the neutron spectrometry
problem.

Different approaches exist to model a system with the data
available. Each one of them has its very own qualities and there-
fore advantages. GRNN falls into the category of PNN. This neural
network like other PNNs needs only a fraction of the training
samples as a BPNN would need. The data available from mea-
surements of an operating system is generally never enough for a
BPNN. Therefore, the use of GRNN is especially advantageous due
to its ability to converge to the underlying function of the data
with only few training samples available. The additional knowl-
edge needed to fitting in a satisfying way is relatively small and
can be done without additional input by the user.

PNN have a very simple structure, therefore very stable pro-
cedures. PNN perform very well for even only a few available
training samples, nevertheless the quality increases as the number
of training samples increases. This makes GRNN a useful tool to
perform predictions and comparisons of system performance in
practice. GRNN is a promising technological tool that can be ap-
plied to solve with high efficiency problems related with neutron
spectrometry.
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