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Abstract 
Some of the interferometry methods proposed for flame temperature measurements from 
its projection could be complex and demand so much computing time. Assuming a 
circular symmetric and smooth flame temperature distribution, it is possible to use a 
linear combination of Gaussian functions with weights constrained to non-negative 
values. 
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Introduction 

The temperature of an object is a measure of the thermal energy. It represents the total internal 
energy of the object. In general, temperature is determined by measuring an optical, mechanical 
or electrical property of a material that varies with temperature. Temperature measurements using  
mechanical and electrical techniques are effective when the object is solid with homogeneous 
temperature and the sensor is in thermal equilibrium. For non-solid objects like flames, these 
techniques present several problems, Yilmaz et al [1], e.g., a great number of measurements are 
required to obtain the  total volumetric temperature of the flame and the its temperature  
distribution is modified by the sensors. On the other hands , optical methods do not perturb the 
flame temperature and also they allow to have a bigger set of measurements. 
Several optical methods are based on color [2, 3], infrared [4], and interferometric [2, 5, 6] 
techniques. Interferometric methods are widely used to measure deformation, tension, 
temperature, etc [7, 8] in a non-invasive and non-destructive way. Such magnitudes produce a 
frequency modulated fringe pattern called interferogram. Demodulation and phase inversion 
processes are needed to estimate the desired physical magnitude. Most of the phase recovering 
methods are based on the Fourier Transform [9], phase shifting [10] or regularization [11-13] 
techniques. Techniques for phase recovery such as Fourier based produces a wrapped phase in 
the interval (-
, 
]. To unwrap this phase, path dependent algorithms [14] can be applied. Ghiglia 
et. al. shows a simple test for path dependence [15]. A robust alternative for many cases is the 
least-squares solution, which is described in matrix form by Hunt [16]. Another robust algorithm 
to find a solution in the presence of path-integral phase inconsistencies using the cosine transform 
is that proposed by Ghiglia and Romero [17]. Optical tomography is a method used to obtain the 
spatial distribution of the refraction index of a phase object (PO) on its non refractive index 
(refractionless limit) from one or more projections. For the case of radially symmetrical phase 
objects only one projection is necessary to reconstruct the refractive index distribution. This 
projection is formed by a set of summa rays (Figure 1). Tomographic reconstruction methods can 
be grouped into two categories: back projection methods and algebraic methods (ART) [18, 19, 
20, 21]. In the algebraic method, the projections are a linear transformation of the cross sections 
of the object, i.e., a linear system given by the vector solutions (projection of each section), a 
transformation matrix and a vector of unknowns (cross section of the linear system phase object) 
[7, 18, 19, 20, 21]. The number of unknowns can be reduced assuming the temperature 
distribution in each section can be estimated by a linear combination of basis functions. In this 
paper, we present a simple and rapid method for measuring the temperature of a flame, using a 
point diffraction interferometer and a set of basis functions. 

 
Figure 1: Object projection.  
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Base theory 

Interferometry 
Interferometry techniques are used to measure physical quantities [1, 7] such as temperature, 
pressure, tension or deformation associated to the refraction index of a object. A common 
objective of these methods is to produce a fringe pattern modulated by variations of these 
magnitudes. An interferogram is described mathematically by  
 

��I(x , y)=a(x , y)+b(x , y)cos[2� f
0
x +�(x , y)]�m(x , y)+�a(x , y),   (1.1) 

 
where (x, y) are spatial coordinates, a(x, y) is the background illumination, b(x, y) is the 
amplitude modulation, 5(x, y) is the phase associated to the refraction index, f0 is the carrier 
frequency [9], and 6m(x, y) and 6a(x, y) are the multiplicative and additive noises, respectively; in 
the case of Speckle Pattern Interferometry (SPI) [21] or single path interferometry [7], the noise 
is multiplicative. For higher levels of noise it is necessary the use of a filter to preserve fringes. In 
many cases a(0) and b(0) are considered as constants when they vary slowly. For interferogram 
with no carrier (f0 = 0) the interferogram can be rewritten as 
 

��I(x , y)= cos[�(x , y)]�m(x , y)+�d(x , y),    (1.2) 
 

The optical path length (OPL) of one ray through a transparent medium is described by 
 

�
� = nds

C�      (1.3) 

OPL is along path C. When refraction is not significant, the path can be approximated by a 
straight line. If the beam is propagated along the z axis, as it is shown in Figure 2, the OPL can be 
expressed as: 

 

��
�(�)= n(�)dz

C�          (1.4) 

 
The optical path difference (OPD) �(0) is given by 
 

��
�(�)= [n(�)�n

0
]

C! dz ,     (1.5) 

 
where 60 is the refraction index of the medium. The OPD is related to the phase 5 in Equation 1.2 
by: 

��
�(x)= 2�

�
�(�)�      (1.6) 

 
For circularly symmetric optical paths (OP), Equation 1.6 can be expressed in terms of Abel 
Transform [7], A{0} by 
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��
�(�)= A n(r)�n

0{ }= A nd(r){ }=2
nd(r)

r2��2
�

+"

! dr    (1.7) 

where r is given by
���

2 + z2 . 
One of the simplest approaches to find Abel transform of a circularly symmetric discrete function 
(nk= n(k), k 4� ), is by a linear combination of rings of width �r and height fk.  The discrete Abel 
Transform, A{0}, can be obtained by 

��

Nk = Ad {nk }=2 nk
k=1
� r

r2�k2( )
1

2

dr
rk

rk+1

�              (1.8) 

Solving the integral we obtain: 

��

Nk

2�r

= Ai ,�knk
k=i
�     (1.9) 

where
��
Ai ,k = (k+1)2�i2
	 ��

1

2 �(k2 + i2)
1

2 . 

 
Figure 2: Cross section object projections. OPL is calculated along the straight line. 

 

Function approximation using base functions 
The purpose of interpolation is to obtain a function which best fits a set of points using a 
predefined cost function. The approximation process can be set as follows: Given a set of points 

��
(xi , yi ) xi , yi �� ,i�� +{ }  find a function, f(x) such that 

��
min yi � f (xi )

2

     (1.10) 
which f(x) could be a linear combination of basis functions 

��
f (x)� wigj(xi )

j
� ,�j�� +          (1.11) 
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where the set of weights �
wj wj ��{ } are those which optimize Equation 1.12. 

��
min
wi

�yi �wjgj(xi )
2

�i , j �� +         (1.12)  

Point Diffraction Interferometer 
In Figure 3, the interferometer of common path uses a diffractor element to measure the 
wavefront [22]. The Point diffraction interferometer (PDI) is located at the focus L2. The PDI is a 
thin optical disc half the diameter of an Airy Disk, equal to 1.22 � f#, where � is wavelength, f# is 
the incident wavefront numeric aperture. The disk modulates the transmitted beam amplitude and 
phase. The PDI generates a synthetic wavefront superimposed to the original wavefront [5, 22, 
23]. The basic idea of the PDI is shown in Figure 4, where the reference wavefront and the object 
produce an interferogram. 
 

 
Figure 3: Interferometer setup.  

 
 

 
Figure 4: PDI Incident  (object) and transmitted wavefront (Reference and Object).  

 
 

Proposed reconstruction method 

If PO is a smooth phase object, then, its refraction index (n(r)) can be approximated by a linear 
combination of k basis functions defined by Equation 1.11 and Equation 1.7 can be rewritten as 

��

�(�)= A wk fk(r)
k
���
�

�
�
�
=2

wk fk(r)k�
r2��2

�

�"

!

���������= wkA fk(r){ }
k
� = wkFk(x)

k
�         (1.13) 
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or in matrix form: 

��=Fw     (1.14) 
 
One choice for the set of basis functions is a set of Gaussians. The positions of the gaussians can 
be evenly distributed on an interval L. The width 1 of the Gaussian functions f may be 
determined by the following relationship 

 
��
� =

L
2d +(ng �1)s

     (1.15) 

where d is the distance of the lower limit to the center of the first Gaussian, s is the separation 
between gaussians (depending on 1� and ng is the number of Gaussians (see Figure 5). 
 

 
 

Figure 5: Uniformly distributed (over an interval L) basis functions 
 
 
The optimal weights w* that fulfill Equation 1.14, produce oscillations that make nd(r) < 0. 
Therefore, it is necessary to limit the solution to weights, wk, equal or greater than zero, i.e. 
 

���
min
w

��Fw
2

,���s.�t.wk 70       (1.16) 

To find the solution of Equation 1.16 the non-negative least square method can be used. 
 
 

Results 

To show the reconstruction quality, a test function  is used. This function is expressed as 
 

 
nt (r ) = �10�4 exp �5r 2( ) + exp �

5
9

r 2�
��

�
��




	
�

�

�
�
   (1.17) 

 
Figure 6 shows some constrained and non-constrained approximations. To compare results, in 
both approximations we use different number of basis functions (BF). We found that the 
constrained approximation has a very good fitting to the test function when it uses a linear 
combination of 5 basis functions; with a higher number of BF, error change is not significant. 
Also we can see that the non-constrained approximations goes below the value of “0”, such thing 
does not happen in the case of the constrained approximation. 
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Figure 7 shows an interferogram obtained with a PDI and a 532.8 nm-wavelength laser.  A 
simple rotation is applied to the interferogram to see vertically. The temperature (T) is found by 
using the Gladstone-Dale relationship [7] 
 

n�1= 0.294036x10�3

1+ 0.369203x10�2T
     (1.18) 

 

  
a) Non- constrained approximation b) Constrained approximation 

 
Figure 6: Functions approximation, ng = {5, 9, 13}, d =0 y s = 1. 

 

 
a) Candle flame interferogram b) Temperature distribution 

 
Figure 7: Interferogram and temperature distribution of a candle flame. 

 
 

Conclusion 

We have shown a temperature estimation method for the optical tomographic reconstruction 
using only one projection of a smooth phase object. With this method we can obtain any 
longitudinal or cross-sectional section of the volumetric distribution of the temperature of a 
candle flame. 
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