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Preface

This volume contains a series of technical papers presented at the Fifth International Symposium on Experimental
Mechanics and Ninth Symposium on Optics in Industry (ISEM-SOI2015) organized by the Society for Experimental
Mechanics (SEM), Academia Mexicana de Óptica, and Centro de Investigaciones en Óptica (CIO) and held in Guanajuato,
Guanajuato, Mexico, August 17–21, 2015.

Symposia were dedicated as part of the celebrations of the International Year of Light 2015 and the XXXV anniversary of
the founding of the CIO and having a general topic relating to the emerging challenges for experimental mechanics in energy
and environmental applications.

This collection of papers presents early findings of experimental and computational investigations on important areas of
Experimental Mechanics. Symposia were intended to be interdisciplinary forums for engineers, technicians, researchers, and
managers involved in all fields of Optics, Opto-mechatronics, Mechanics, and Mechanical Engineering. Overall, papers
were assigned to the following relevant tracks:

Non-destructive methods
Dynamic and static structure and substructure testing
Multi-scale fields
Advanced new materials and their characterization
Environmental measuring techniques

The organizers thank the authors, presenters, and session chairs for their participation, support, and contribution to these
Symposia.

Leon, Mexico Amalia Martı́nez-Garcı́a
Worcester, MA Cosme Furlong
Leon, Mexico Bernardino Barrientos
Worcester, MA Ryszard J. Pryputniewicz
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Chapter 17

Index of Refraction Measurements in Liquid Substances of Full Field
Using Holographic Interferometry

Carlos Guerrero-Mendez, Tonatiuh Saucedo-Anaya, M. Araiza-Esquivel, Enrique De la Rosa,
and Carlos Olvera-Olvera

Abstract We present a novel method based on Digital Holographic Interferometry to detect slight physical variations of
refractive indexwith high sensitivity in liquid substances. The technique is grounded in themeasurement of a phase difference
between two reconstructed wavefields. The optical system was tested using a series of sodium chloride (NaCl) solutions to
detect a variation in its physical property such as concentration. A first hologram records a wavefront coming from the light
scattered by a common cylindrical glass container filled with certain NaCl solution. Later, a second hologram is recorded
when the solution mentioned above slightly changes its concentration. The difference between the phase maps obtained from
the correlation from the two holograms will provide information about a refractive index variation, which is directly related to
a concentration change. The achieved results have proven to bemore accurate and faster to get than with other techniques. The
process requires just a few special optical elements and is able to measure the three-dimensional distribution of the refractive
index of a sample. This method can be extended to identify adulteration in liquids, measure the variation in refractive index in
gaseous flames, apart from analyzing and visualizing the mechanical properties of a liquid sample.

Keywords Digital holographic interferometry • Phase measurement • Refractive index • Phase difference • Non-destructive
methods

17.1 Introduction

Physical properties of liquids such as concentration, weight, color and others are important parameters that can be used as an
identification tool or “fingerprint” of some solutions [1, 2]. Likewise analysis of the variations of one or more of such
parameters is important to some areas of science. For example, in medicine, the study of certain physiological fluids (like
urine) is an important aspect that may indicate the state of health of the body [3]. Generally speaking, detailed analysis of any
variations in parameters in a medical solution can mark the difference for a suitable treatment of a disease when necessary
[4]. On the other hand, adulteration problems in many commercial substances have increased in the last days, and we require
reliable and simple techniques to detect changes of the liquid properties that can help controlling adulteration of liquids [5].

Optical techniques are able to detect changes in concentration of liquid solutions through measurements of the unique
optical parameter of a medium called refractive index [6, 7]. The typical optical technique to determine a refractive index
utilizes the displacement of the angle of a beam refracted by a sample, and these methods use a prism [8–11], square [12, 13]
and special containers [14]. Additionally, these methods are easy to implement and understand, and require few optical
elements. However the refracted angle is difficult to measure, and ultimately you can only make a good estimation of the
measured angle, which decreases the accuracy of measurements and we can only get the refractive index in the illuminated
region [15].

Advanced optical techniques of full-field, non-destructive, non-contact, non-invasive nature with a metrology potential to
detect a variety of physical parameters variation in fluids with high resolution and stability have been developed
[16–18]. These are called Schlieren, Shadowgraph, Interferometry techniques, from which DHI arised [19].
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Important works have established methods to measure the refractive index values using DHI [20], which may be related with
the concentration of the liquid solution [21, 22]. However, these researches consider the thickness of the container as known.

In this work we present a simple, fast, full-field, non-destructive, high-precision technique to measure the refractive index
of a liquid solution. The method can detect slight differences in concentration of liquid mixtures, through the relationship
between concentration and refractive index. The method detects differences on the order of !0.007 % with the thickness of
the mixture container unknown. The system was tested using sodium chloride solutions. The obtained results show
consistence with data published in [23].

17.2 Principles and Experimental Setup

The experimental setup is shown in Fig. 17.1. A monochromatic light coming from He-Ne laser with a wavelength
λ ¼ 543nm and a maximum output power of 15 mW is divided into two beams by a Beam splitter BS1. The transmitted
beam (called “an object beam”) impinges on a mirror M1 and is reflected towards the lenses L1, L2 and the diffuser D1, in
such a way that it illuminates the common glass tube that contains the liquid sample S to be analyzed. Part of the light enters
through a rectangular aperture A1 and is collected by a positive lens L3 that forms the image of the tube with the sample in
the Charge-Coupled Device (CCD) sensor. The reflected beam (named “the reference beam”) travels through a single mode
optical fiber SSMF1, and is sent into the cube beam splitter BS2 placed in front of the CCD in such a manner that it interferes
with the “object beam” in the CCD sensor. As an initial step, a hologram (H1) is recorded coming from the first mixture
sample (named s1). The CCD is a mono color sensor with 1280 # 1024 pixels (1.3 MP). During the experiment the
temperature was controlled at 20 $C. The wavefront scattered by the glass tube in this first state can be represented as a
complex amplitude as U1 x; yð Þ ¼ u1 x; yð Þexp iφ1 x; yð Þ½ (, with u1(x, y) the real amplitude and φ1(x, y) the phase.

A second hologram (H2) is recorded when the solution in the tube is slightly modified in its concentration (creating the
sample s2). This second state or mixture in the glass is represented as U2 x; yð Þ ¼ u2 x; yð Þexp i φ1 x; yð Þ þ Δφ x; yð Þð Þ½ ( or
simply U2 x; yð Þ ¼ u2 x; yð Þexp iφ2 x; yð Þ½ (. The phase map from each hologram is calculated using the method of the Fourier-
transform [24, 25]. Figure 17.2a shows the hologram of the common glass tube filled with a sample liquid. Fig. 17.2b shows
one example of the Fourier-transform of an intensity distribution recorded with the arrangement shown in Fig. 17.1. We can
filter out the central term and one of the images of the aperture and keep the other as shown in Fig. 17.2c.

The phase of a wavefront is related to the optical path length δ via φ ¼ 2πδ=λ. This path length is linked with the
morphology and physical properties of the transmitting medium as δ ¼ nd, where n is the index refraction and d as the
thickness of the sample. According to cylinder geometry, the phase of a hologram can be described as:

φ ¼ k dt * dið Þ*ng þ di*ns
! "

;

where k ¼ 2π=λ; di and dt are the inner and outer diameters of the glass tube respectively; ns and ng are the known refractive
indices of the mixture and the glass respectively. See Fig. 17.3.

To get a quantity value of the refractive index difference between any two liquid samples, called s1 and s2, we use their
phase terms to calculate a phase difference Δφs2*s1 ¼ φs2 * φs1

# $
and generate a phase map described as:

LASER

BS1
FC1 SSMF1

M1
L1

L2

D1 A1
S

L3
BS2

CCDR
O

Fig. 17.1 Experimental setup
using the DHI. BS1, BS2 cube
beam splitters, FC1 fiber
collimator, M1 mirror, L1, L2,
L3 lenses, SSMF1 single mode
fiber, S sample liquid (glass
tube), D1 diffuser, A1
aperture, O object beam,
R reference beam
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Δφs2*s1 ¼ kdi ns2 * ns1ð Þ; ð17:1Þ

Using (17.1) we can calculate a refractive index difference between aqueous substances, but given that in our optical system,
the phase object or the tube used is an ordinary glass cylinder whose walls are optically imperfect and thickness
measurements are unknown (di). To solve this, we use a liquid with known properties values; this can be a reference
solution so to create an expression that eliminates the dependence on this parameter. We construct

di ¼
Δφr

Δnr
k*1; ð17:2Þ

where Δφr ¼ φs1 * φs0 is the phase difference obtained (called “of reference”) from the two known liquid substances
and Δnr is the index refraction difference of them.

Using (17.1) and (17.2) we can get the value of the refractive index difference between two substances as:

Δn2*1 ¼
Δnr
Δφr

Δφ2*1; ð17:3Þ

To get a refractive index value regarding our reference value, (17.3) changes as:

ns2 ¼
Δnr
Δφr

Δφ2*0 þ nso ; ð17:4Þ

where Δφ2*0 ¼ Δφ2*1 þ Δφ1*0.

17.3 Experimental Method and Results

In order to calculate and visualize an index refraction distribution in a liquid sample, we use three liquid substances, two of
them have known values of index refraction and molarity (s1 and s0), and the last substance has a refractive index unknown
(s2). The optical system was tested using a series of solutions with a certain amount of sodium chloride (NaCl) to be

Fig. 17.2 A Fourier-transform method. (a) Digital hologram of the container; (b) separated Fourier spectra with the image of the aperture; and
(c) single spectrum selected

Sample

Glass tube wall

dt di

Fig. 17.3 Shows the glass
tube with the liquid sample.
di inner diameter, dt outer
diameter

17 Index of Refraction Measurements in Liquid Substances of Full Field Using Holographic Interferometry 125

amalia@cio.mx



compared with the values found in [23]. A first hologram with the tube filled with distilled water is recorded and was used as
s0 in all our experiments. After that, a series of holograms are recorded with their corresponding saline solution (with 0.086,
0.172, 0.258, 0.344, 0.430, 0.516 mol). The phase reference was created using distilled water (s0) and the solution with
0.086 mol (s1). Then a series of phase difference maps are obtained from the correlation between the holograms calculated
from the solution that works as the unknown liquid sample (i.e. s2) and the next substance with a lower concentration (s1).
See Fig. 17.4.

The ns0 value in (17.4) is the known value determined for the distilled water ns0 ¼ 1:3330ð Þ. If we use the ns0 and the value
from the correlation between solutions (i.e. in Δφ2*0 ), it is very high and produces a wrapped phase map that has high
frequencies (see Fig. 17.5). We will have to add more small values in (17.4). The small parts are unwrapped (see Fig. 17.6),
in such a way that allows us to calculate the refractive index of s2.

Table 17.1 shows the deviation in the refractive indices measured by the method proposed and those found in [23] that are
approximately !0.007 %.

The method proposed using the DHI allows to visualize the distribution of the refractive index value of full-field and is
linked with the different physical properties in the liquid sample. See Fig. 17.7. Figure 17.8 shows the comparison of the
values obtained among those found in [23].

17.4 Conclusions

In this paper, we report a new method to detect with a high sensibility a possible variation on the physical properties of a
liquid by the DHI. The process registers phase variations between wavefields scattered by full-field liquid samples. The
method is inexpensive, noninvasive, fast and easy to develop in a laboratory. The technique can resolve extremely small
changes in refractive index, on the order of 0.007 %, that is, differences of !0.0001 of accuracy in comparison to the value
of the refractive index reported in [23]. In addition to this, the method does not use a special device to hold the aqueous
sample and neither is it necessary to know the inner diameter di and ng, that refer to the thickness and the refractive index of

Fig.17.4 Maps of wrapped phase difference. Samples: (a) s2 ¼ 0.086 mol and s1 ¼ distilled water, (b) s2 ¼ 0.172 mol and s1 ¼ 0.086 mol, (c)
s2 ¼ 0.258 mol and s1 ¼ 0.172 mol, (d) s2 ¼ 0.344 mol and s1 ¼ 0.258 mol, (e) s2 ¼ 0.43 mol and s1 ¼ 0.344 mol, (f) s2 ¼ 0.516 mol and
s1 ¼ 0.43 mol
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the glass tube respectively, and are considered negligible values for another similar researches. The method can be extended
to study a variety of applications requiring noncontact, real-time remote monitoring of liquid concentration and to identify
liquid adulterations.
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Fig. 17.6 Phase unwrapped
(s2 ¼ 0.0866 mol and
s1 ¼ distilled water)

Table 17.1 Comparisons among
refractive indices measured by
the DHI and those found in [23]

Molarity Index refraction in [23]
Index refraction (ns2 )
measured with DHI

0.086 1.3339 1.3339

0.172 1.3347 1.3348

0.258 1.3356 1.3357

0.344 1.3364 1.3365

0.430 1.3373 1.3374

0.516 1.3382 1.3383

Fig. 17.5 Wrapped phase
map that has high frequencies
(s2 ¼ 0.516 mol and
s0 ¼ distilled water)
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