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Regularized quadratic cost function
for oriented fringe-pattern filtering
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We use the regularization theory in a Bayesian framework to derive a quadratic cost function for denoising
fringe patterns. As prior constraints for the regularization problem, we propose a Markov random field
model that includes information about the fringe orientation. In our cost function the regularization term
imposes constraints to the solution (i.e., the filtered image) to be smooth only along the fringe’s tangent di-
rection. In this way as the fringe information and noise are conveniently separated in the frequency space,
our technique avoids blurring the fringes. The attractiveness of the proposed filtering method is that the
minimization of the cost function can be easily implemented using iterative methods. To show the perfor-
mance of the proposed technique we present some results obtained by processing simulated and real fringe
patterns. © 2009 Optical Society of America

OCIS codes: 100.2650, 100.3020.
The demodulation of digital fringe patterns is widely
used in optical tests such as electronic speckle pat-
tern interferometry (ESPI), holographic interferom-
etry, or moiré interferometry. Several techniques can
be applied for the extraction of the phase field; how-
ever, in the process of formation and acquisition of
fringe patterns, noise commonly contaminates im-
ages. For this reason denoising fringe patterns plays
an important role to make phase extraction easier,
more robust, and more accurate. However, the fre-
quencies of fringes and noise usually overlap and
normally cannot be separated properly, and common
filters for image processing have blurring effects on
fringe features, especially for patterns with high-
density fringes. For these cases the use of anisotropic
filters is a better way for removing noise without
blurring effects.

In the field of image processing, the regularization
theory [1–3] has been demonstrated to be a powerful
tool for reconstructing images. Particularly, in the
past few years some works have been developed for
fringe analysis, among them are the works in [4,5].
Although directional filtering has been studied for
fringe images, for example, the outstanding work by
Tang et al. [6] that proposed second-order oriented
partial-differential equations for denoising ESPI
fringes, we use a different and powerful mathemati-
cal tool for this purpose. In this Letter we derive a
regularized quadratic cost function that is used for
denoising along fringes in this kind of images.

It is widely known that the problem of reconstruct-
ing an image x from a degraded image y, i.e., the ob-
served image, is often formulated according to the
model

y = H�x� + n, �1�

where n is the additive noise and H may represent a

linear operator that is assumed to be known, which
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may be some kind of distortion. For example, H may
be the point spread function of the imaging system.
In general, the information provided by the observa-
tions of y is not enough for a proper estimation of x.
For an adequate recovery of x we need to regularize
the problem including prior information about the
characteristics of the field to be estimated. The sto-
chastic route to regularize the problem described in
Eq. (1) may be derived using the Bayesian estima-
tion. Using the Bayes’s rule, one may model the pos-
terior distribution of x with a given y as

Px/y�x� = KPy/x�x�Px�x�, �2�

where K is a constant and

Py/x�x� = K1 exp�− �
m�L

��H�xm� − ym�� �3�

represents the conditional distribution of y with a
given x, � is a potential function that is defined by
the noise model, m= �i , j� is the image coordinates in
a regular lattice L, and K1 is a constant. The prior
distribution Px�x� that is commonly used in the
framework of the Bayesian regularization are the
Markov random fields (MRFs) [3,7,8], which are de-
fined by a set C of potential functions Vc that ranges
over the cliques associated with a given neighborhood
system. An important characteristic of the MRFs is
that the probabilistic dependencies of the elements of
the estimated field are local, which make MRFs ad-
equate for modeling piecewise smooth functions. Us-
ing an MRF, Px�x� is then given by the Gibbs distri-
bution

Px�x� = K2 exp�− �
C

Vc�xm�� , �4�

where K2 is a normalizing constant.

Then, we can define the maximum a posteriori es-
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timator as the minimizer of a cost function of the
form

U�x� = �
m�L

��H�xm� − ym� + ��
C

Vc�xm�, �5�

where parameter � is a parameter that depends on
the noise variance. It is a positive number that con-
trols the compromise between the degree of regular-
ization and its closeness with the observed data.

Finally, the regularized solution x̂ is given by

x̂ = argmin
x

�U�x��. �6�

The first term in Eq. (5), called the data term, estab-
lishes that the reconstruction of x must be consistent
with the observed data. The second term in Eq. (5) is
the well-known regularization term that imposes a
penalty for violating the a priori assumptions. For
example, considering a Gaussian noise and an MRF
with a neighborhood system C that corresponds to
the horizontal, vertical, and diagonal first-neighbor
elements, that is, C= �l�L :0� 	m− l	�
2�, the regu-
larized cost function may be of the form

U�xm� = �
m�L

�xm − ym�2 + � �
�m,l�L

�xm − xl�2. �7�

In this equation the first term imposes the estimated
field to be close to the data in the sense of least
squares. On the other hand, the second term imposes
the estimated field to minimize the square differ-
ences along the horizontal, vertical, and diagonal di-
rections. This means that the estimated image x̂ by
minimizing this cost function represents a simple
low-pass filtered image. Unfortunately, the model of
cost function (7) represents an isotropic filter that
smoothes the original image in all directions, which
may blur fringe information.

To derive a cost function for filtering along the
fringe’s tangent direction, we now consider the field
of orientations �m. The discrete version of the partial
derivatives along the fringes can be defined as

�x

��
= �xm − xh�cos �m + �xm − xv�sin �m, �8�

where h and v represent the first neighbors of m
along the horizontal and vertical directions, respec-
tively. Now, we propose the following cost function:

U�xm� = �
m�L

�xm − ym�2 + � �
�m,h,v�L

��xm − xh�cos �m

+ �xm − xv�sin �m�2. �9�

The minimization of this cost function is equivalent
to smoothing the image only along the fringe’s tan-
gent direction.

Introducing the image coordinates i , j we can re-

write Eq. (9) in the following way:
U�xi, j� = �
�i, j��L

��xi, j − yi, j�2 + ��� �x

��
�

i, j

2

+ � �x

��
�

i+1, j

2

+ � �x

��
�

i, j+1

2 �� , �10�

where

� �x

��
�

i, j

= �xi, j − xi−1, j�ci, j + �xi, j − xi, j−1�si, j,

� �x

��
�

i+1, j

= �xi+1, j − xi, j�ci+1, j + �xi+1, j − xi+1, j−1�si+1, j,

� �x

��
�

i, j+1

= �xi, j+1 − xi−1, j+1�ci, j+1 + �xi, j+1 − xi, j�si, j+1,

�11�

ci, j=cos �i, j and si, j=sin �i, j.
To minimize cost function (10) we have to solve the

following linear system, which is obtained by setting
the partial derivative of U�x� with respect to xi, j and
equating it to 0:

�U

�xi, j
= 2�xi, j − yi, j� + 2���xi, j − xi−1, j�ci, j + �xi, j

− xi, j−1�si, j��ci, j + si, j� − 2���xi+1, j − xi, j�ci+1, j

+ �xi+1, j − xi+1, j−1�si+1, j�ci+1, j − 2���xi, j+1

− xi−1, j+1�ci, j+1 + �xi, j+1 − xi, j�si, j+1�si, j+1 = 0.

�12�

Once the orientation field �m is previously estimated,
the field xi, j can be computed using iterative methods
[9]. In our experiments we used the simple gradient-
descent algorithm, which is described by the itera-
tions

xk+1 = xk − �
�Uk

�x
, �13�

where � is a positive constant.
The implementation of the filtering method re-

quires the previous computation of the field � at each
cite in the image. For this purpose we use the tech-
nique reported by Yang et al. [10]. We briefly describe
this method for the computation of fringe orientation.
The authors computed the fields of image differences
in the horizontal, vertical, and diagonal directions,

di, j
0 = �yi−1, j − yi+1, j�
2, di, j

45 = �yi−1, j+1 − yi+1, j−1�,

di, j
90 = �yi, j−1 − yi, j+1�
2, di, j

135 = �yi−1, j−1 − yi+1, j+1�.

�14�

Owing to the computation of central differences in di-
agonal directions, the factor 
2 is used in the hori-

zontal and vertical differences for consistency. For es-
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timating the angle � along the fringe’s orthogonal
direction, they consider square regions 	�L with
center �i , j� such that

�i, j =
1

2
arctan� �

�k,l��	

dk,l
45 − �

�k,l��	

dk,l
135, �

�k,l��	

dk,l
0

− �
�k,l��	

dk,l
90� , �15�

where the function arctan�· , ·� returns values in the
interval �−
 ,
�, so that �� �−
/2 ,
/2�. Finally, we can
compute the field � just by knowing that �=�±
/2.

We show the performance of the filtering method
with the following three experiments. In all the ex-
periments we used the value �=0.01 with 30 itera-
tions for the optimization algorithm in a 2.66 GHz
Pentium D based computer using MATLAB.

Figure 1(a) is a simulated noisy fringe pattern of
size 400�400. In Figs. 1(b) and 1(c) we show the re-
sults obtained by minimizing cost functions (7) and
(10), respectively. We used the value �=4 in both
cases. Optimizing cost function (10) required 3.1 s.
Figure 2(a) is a real moiré fringe pattern of size 220
�220. In Figs. 2(b) and 2(c) we show the results ob-
tained by minimizing cost functions (7) and (10), re-
spectively. In this case we used the values �=3 and
�=10, respectively. Optimizing cost function (10) re-
quired 0.9 s. Figure 3(a) is an experimentally ob-
tained ESPI fringe pattern of size 200�200. Using
cost function (7) with �=5 we obtained the result
shown in Fig. 3(b). Using the oriented filtering
method with �=20 we obtained the result shown in
Fig. 3(c). Optimizing cost function (10) required 0.7 s.

The results show that filtering the images by
means of cost function (7), the fringes are blurred
specially in high-frequency zones. On the other hand,
using our proposed method, the filtering operation
preserves the fringes even in high-frequency zones.

Fig. 1. (a) Simulated noisy fringe pattern. (b) Result ob-
tained by minimizing cost function (7). (c) Result obtained
by minimizing cost function (10).

Fig. 2. (a) Real moiré fringe pattern. (b) Result obtained
by minimizing cost function (7). (c) Result obtained by
minimizing cost function (10).
View publication statsView publication stats
We can observe that in both cost functions, the pa-
rameter � controls the wide band of the filter (the
higher the value of � the narrower the wide band);
however, in cases of high noise levels increasing the
value of � using cost function (7) may eliminate
fringe information in high-frequency zones, as ex-
periments show. On the other hand, with cost func-
tion (10) we can increase the value of � preserving
the fringe information because the filtering operation
is realized only along the fringe’s tangent direction.
The key factor of this characteristic is the proposed
MRF, which penalizes big directional derivatives
along the fringes by including orientation informa-
tion. In this way the proposed filtering method may
be considered adaptive in the sense that it adapts its
filtering direction at each pixel in the image.

In some cases the filtering method presented here
has a low performance in low-frequency zones. This
problem, however, is not owing to cost function (10)
itself but to the algorithm for estimating the fringe
orientation. Unfortunately, as far as we know, all al-
gorithms for estimating fringe orientation are so sen-
sitive to low modulation and noise in very low-
frequency zones. In particular, with the technique
adopted in our work [10], this problem may be re-
duced by increasing the size of region 	 [Eq. (15)];
however, this may affect the estimation in high-
frequency zones.
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