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Improved regularized phase-tracking technique
for the processing of squared-grating deflectograms

Jesús Villa, Juan Antonio Quiroga, and Manuel Servı́n

We propose a robust procedure based on the regularized phase-tracking ~RPT! technique to demodulate
squared-grating deflectograms. The use of squared gratings, already reported, lets us multiplex the
information of the deflections in two orthogonal directions in a single image, thus avoiding the necessity
of rotating the gratings. The good noise-rejection characteristics of the RPT technique are improved by
use of a quasi-Newton optimization algorithm and a quality-map-based algorithm for the crystal-growing
process. © 2000 Optical Society of America

OCIS codes: 120.2650, 120.4120, 100.2650, 170.4460, 100.5070, 120.5050.
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1. Introduction

Moiré deflectometry is a widely known technique for
measuring ray-deflection maps caused by phase
objects, based on moiré and Talbot effects.1,2 The
pplications of the technique range from reflective-
urface analysis3 to the measurement of refractive
ndex and temperature distribution.4,5 In our par-
icular case the application objective is to determine
he power distribution in ophthalmic lenses. The
xperimental setup we used is shown in Fig. 1. A
ollimated beam crosses the phase object to be tested
ollowed by a pair of linear transmission gratings G1
nd G2 placed at a Talbot distance Z from each other.
he Talbot image of G1 in the plane of G2 is de-

ormed, owing to ray deflections caused by the object
nder test. The deflection information is codified in
he resulting distorted moiré fringe pattern, which is
bserved in screen S by a CCD camera.
Several techniques have been applied to retrieve

eflection information from deflectograms. Servı́n
and Rodriguez-Vera6 measured the deviation of the
ringe with respect to the unperturbed moiré fringe.

In this way the deflection in the direction perpen-
dicular to the reference fringes is measured. Canabal
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and Quiroga proposed the measurement of local
fringe direction to compute the local power of oph-
thalmic lenses. These techniques are based on ei-
ther fringe maximum intensity location or gradient
computation; thus they are more sensitive to noise.

Other possibilities are the phase-measurement
methods. In moiré deflectometry the phase associ-
ated to the fringe pattern is directly related to the
deflection at every point. The phase-shifting tech-
nique was applied by Pfeifer and Wang8 and by
Canabal et al.9 The necessary phase shifts are ob-
tained by lateral movement of one grating with re-
spect to the other. The main problems with using
Ronchi rulings are the diffraction effects and the as-
sumption that the fringe pattern is sinusoidal.
Studies to minimize these problems were reported by
Keren and Kafri10 and by Bar-Ziv.11

An additional method is the Fourier-transform
technique proposed by Takeda et al.12 This tech-
nique solves the problems associated with higher har-
monics produced by Ronchi rulings. An early
application of the Fourier transform in Talbot inter-
ferometry can be found in Ref. 13.

If linear gratings are used, all these techniques
need at least two images rotated 90° from each other
to obtain the complete deflection information. Qui-
roga et al.14 proposed the Fourier-transform method,
using squared gratings to multiplex the complete in-
formation of deflections in a single image, thus avoid-
ing the requirements mentioned above.

Despite its advantages, the Fourier-transform
method still has some problems. First, the bound-
aries of the area of interest are an important error
source. This problem can be solved by use of the
Gerchberg extrapolation algorithm.15 Second, the
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Fourier-transform technique assumes the carrier to
be constant. Iterative procedures can be used to
minimize this problem.16 Finally, the sidelobes con-
taining the deflection information must be isolated by
a bandpass filter of a size determined by the band-
width of the signal. If we want to recover the com-
plete information contained in the sidelobe, we cannot
avoid that the noise present in this area is retrieved as
well. This problem may be solved if we use a narrow
bandpass filter, but this implies that the higher fre-
quencies of the signal will be lost. The noise present
in the recovered phase can be a drawback if gradient
information must be computed from the estimated
phase, as is the case in the measurement of power
distribution of ophthalmic lenses.14

In this study the regularized phase-tracking ~RPT!
technique17 is applied to retrieve the continuous de-

ection and its gradients from deflectograms ob-
ained with squared gratings. A squared grating
an be considered to be the superposition of two linear
onchi gratings with an angle of 90° between them.
he use of squared gratings for the simultaneous
cquisition of two independent pieces of information
s a known procedure in shearing interferometry18

and experimental mechanics.19 In our case the use
of these kinds of grids enables the processing of two
orthogonal ray deflections.

As we show below, RPT can solve the above-mentioned
problems of the Fourier-transform method while keep-
ing its good properties. The principle of the method
together with practical considerations regarding the
use of squared gratings are presented in Section 2.
Experimental results obtained with a progressive ad-
dition lens as well as comparison with measurements
made with a commercial focimeter are presented in
Section 3. Finally, conclusions are given in Section 4.

2. Application of Regularized Phase Tracking to
Squared-Grating Deflectograms

A. Regularized Phase-Tracking Technique

The phase estimation of a fringe pattern may be for-
mulated as an inverse problem that must be solved by

Fig. 1. Typical experimental setup used in moiré deflectometry.
Gratings G1 and G2 are placed at a Talbot distance Z from each
other to form a moiré fringe pattern. The fringe image is observed
n the screen S.
an algorithm that incorporates a prior smoothness
constraint about the phase being detected. To solve
this problem, we may regularize it by proposing a
suitable cost function with two terms related to the
following: ~1! the fidelity between the estimated
unction and the observations and ~2! the smoothness

of the phase being detected. It is assumed that the
estimated phase function is the minimizer of the pro-
posed cost function.

In the RPT technique developed by Servı́n et al.17

the fringe pattern is considered to be locally mono-
chromatic; that is, the local irradiance is modeled as
a cosinusoidal function phase modulated by a plane.
The modeled cosinusoidal function must be close to
the irradiance of the pattern that corresponds to the
fidelity term. In this way the phase must be
adapted to every region in the pattern. Smoothness
and continuity of the estimated phase are enforced by
the regularization term. The cost function proposed
by Servı́n et al.17 is expressed as

UT 5 (
(x,y)[L

Ux,y(f, vx, vy), (1)

where

Ux,y(f, vx, vy) 5 (
(x̃,ỹ)[(Nx,yùL)

{ugh(x̃, ỹ) 2 cos[fe(x, y, x̃, ỹ)

1 u0x 1 v0y]u2 1 luf(x̃, ỹ)

2 fe(x, y, x̃, ỹ)u2m(x̃, ỹ)}, (2)

fe(x, y, x̃, ỹ) 5 f(x, y) 1 vx(x, y)(x 2 x̃)

1 vy(x, y)(y 2 ỹ), (3)

where Ux,y is the energy of the system at a site ~x, y!
n the image. L is a two-dimensional lattice that has

valid data, and Nx,y is a neighborhood region around
the coordinate ~x, y! in the image where the phase is
being detected. The field m~x, y! is an indicator that
equals 1 if the site has already been estimated and is
0 otherwise. The fields vx and vy are the estimated
local frequencies in the x and the y directions, which
are the first derivatives of the phase; in this way no
explicit differentiation over the estimated phase is
required. The possible presence of a carrier fre-
quency is indicated by uo and vo, which stand for the
components of the carrier frequency. The so-called
regularizing parameter l controls the smoothness of
the detected phase. The choice of this parameter
has been widely discussed in the literature, and no
precise formula can be applied to determine an opti-
mal value for a given problem so that it is commonly
selected intuitively ~see, for example, Ref. 20!. The
field gh~x, y! is a high-pass-filtered and normalized
version of the fringe pattern. As Servı́n et al.17 men-
tioned, function ~1! is multimodal; so it may have
several minima. Thus the minimization of this
function is a difficult task. Following Servin et al.,17

we compute a first estimation of the phase by mini-
mizing local cost function ~2! with the so-called
crystal-growing algorithm.
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 503
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In the frequency domain we may consider the RPT
to be a narrow bandpass adaptive filter that is mov-
ing smoothly with high inertia over the spectrum of
the signal. This characteristic presents the addi-
tional advantage of a large gain in the signal-to-noise
ratio of the recovered signal.

B. Considerations for Use of Regularized Phase Tracking
with Squared-Grating Deflectograms

When squared gratings are used in a deflectometer
such as the one depicted in Fig. 1, a fringe pattern
with two fringe systems containing the complete de-
flection information is obtained.14 If we use Ronchi
gratings, the model for this fringe pattern image may
be expressed as

g(x, y) 5 (
n52`

`

an
2 cos[nFx(x, y)] (

m52`

`

cos[mqFy(x, y)],

(4)

here

Fx(x, y) 5 Zqfx(x, y) 1 u0x 1 v0y, (5)

Fy(x, y) 5 Zqfy(x, y) 1 v0x 2 u0y, (6)

with uo 5 q~cos u 2 1! and vo 5 q sin u, where Z is the
distance between gratings, q 5 2pyp, p is the period
of the grating, u is the angle between the gratings,
and fx and fy are the deflections we are looking for.
In a simplified form we can rewrite Eq. ~4! as

gh(x, y) 5 cos[Fx(x, y)]cos[Fy(x, y)], (7)

where we have neglected higher harmonics and as-
sumed that no dc term is present ~for a Ronchi ruling,
an is proportional to 1yn2!.

The selection of the component to be processed is by
means of the carrier frequency. As with the Fourier
method, the carrier lets us differentiate between fx
and fy. For example, if we choose as a carrier uox 1
voy from minimizing Eq. ~2! with gh~x, y! given by Eq.
~7!, we should obtain three fields corresponding to fx,
fxy]x, and ]fxy]y.

The model we are using in the RPT ~a single cosi-
usoidal function! differs from the model of the ob-
erved data ~two crossed cosinusoidal functions!. In
his way when we select one of the fringe patterns by
eans of the carrier we are treating the other as

nterfering noise that might introduce errors into the
hase estimation. Servin et al.17 proposed the use of

the gradient-descent method to minimize function
~2!. With squared gratings this simple algorithm is
not robust enough, even when the two deflections are
clearly separated in the frequency domain.

Taking into account the results obtained, we de-
cided to use a more efficient algorithm to minimize
cost function ~2!. The selected minimizing algo-
rithm was the Broyden–Fletcher–Goldfarb–Shanno;
this is a quasi-Newton–type method. We tested this
algorithm with real images, obtaining good results.
However, the cost of the robustness of the optimiza-
tion algorithm is a greater processing time compared
with that proposed in Ref. 17 ~this is discussed in
04 APPLIED OPTICS y Vol. 39, No. 4 y 1 February 2000
Section 3 below!. The implementation of this algo-
ithm is easy, since it is already included as part of
he optimization toolbox of the MATLAB environ-
ent.21

In the RPT technique the phase estimation is per-
formed as a growing process. Local function ~2! is

inimized point by point by means of the algorithm
entioned above. In general, minimization algo-

ithms require good initial values in order to reach
he correct solution. Thus, once one pixel is pro-
essed, the obtained solution @f, vx, vy# at pixel ~x, y!
s used as the initial value in the minimization of
ocal cost function ~2! at the next neighbor pixel ~the

problem of the starting pixel is addressed below!.
This procedure is path dependent, because the esti-
mation depends on adjacent sites that have already
been estimated; hence the path selection for the
crystal-growing process becomes important with
noisy fringe patterns. The usual way to perform the
crystal-growing process is simply by scanning row by
row. This procedure does not take into account the
local quality of the fringe pattern. In the case of
ophthalmic lenses the quality of the fringe pattern in
the borders of the area of interest is poor. Also, in
the areas of high power there exists an increase of the
fringe density and therefore a modulation decrease
that is due to the discrete sampling with finite size
elements. For these reasons the crystal-growing al-
gorithm must be able to select the path that processes
the highest-quality areas first.

For this purpose the quality-map-based algorithm
of Ströbel22 is applied for the crystal-growing process.
The quality map used by Ströbel22 is the amplitude
modulation of the fringe pattern calculated by stan-
dard phase-shifting techniques. In our case we are
analyzing single fringe patterns with a carrier; that
is, there is no possibility to compute the amplitude
~quality! map with phase shifting. However, we can
apply the Fourier-transform technique and compute
the amplitude map of the resulting complex signal.
We obtained the best results by quantifying the qual-
ity map to a few values, typically 4 or 5. As men-
tioned, one of the drawbacks of the Fourier-transform
method is the poor performance in the borders of the
area of interest. That is, the computed quality map
is not reliable in such borders. For this reason, in
addition to the quantification, the zones adjacent to
the borders are set to the lowest-quality value. In
this way the borders are processed last.

With the RPT guided by a quality map, the demod-
ulation starts from the highest-quality pixel; how-
ever, since no pixel has been processed, no initial
values for the minimization of local cost function ~2!
re available at this site. A drawback of the q uasi-
ewton optimization methods is that they require a

ufficiently precise initial approximation of the solu-
ion to ensure the convergence.23 This is a problem,

because in the RPT technique the estimation at the
first point is important for avoiding further error
propagation. In fact, with squared-grating deflecto-
grams the demodulation of the starting point deter-
mines the failure or the success of the demodulation
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of the whole fringe pattern. For this reason the
stimation at the first pixel is performed with the sim-
ple gradient-descent method to ensure a close approx-
imation to the solution.

3. Experimental Results

To test the proposed procedure to demodulate
squared-grating deflectograms, we measured the
spherical and the cylindrical power of a progressive
addition lens, in particular, a left-eye Hoyalux pro-
gressive lens. The results obtained were compared
with the measurements made with a commercial fo-
cimeter. The reference deflectogram and the dis-
torted deflectogram are shown in Figs. 2~a! and 2~b!,
respectively. The size of the images is 128 3 128
pixels with 256 gray levels. To demodulate each of
them, we determined from the reference deflecto-
gram the values of the fringe carrier frequencies.
The recovered phase from the reference is subtracted

Fig. 2. ~a! Reference and ~b! distorted moiré deflectograms for a
progressive addition lens obtained with squared gratings.
from the phase of the distorted deflectogram to cor-
rect the error in the determination of the carrier fre-
quencies.

A comparative experiment was made to process the
deflectogram shown in Fig. 2~b!. Figure 3~a! shows
the deflection in the x direction obtained with the
Fourier method by use of a Gaussian filter. Figure
3~b! shows the same deflection obtained with RPT.
As can be seen in Fig. 3~a!, the Fourier-transform
method cannot recover the deflection information, es-
pecially in the high-frequency areas; this is because
the carrier is not high enough to separate completely
the sidelobe information by means of a simple band-
pass filter. As we explained above, the RPT behaves
like an adaptive narrow bandpass filter that allows
for complete recovery of the signal with a high signal-
to-noise ratio. In the case of measuring power dis-

Fig. 3. Phase map corresponding to the deflection in the x direc-
ion obtained with ~a! the Fourier method and ~b! the RPT tech-
ique.
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 505
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tributions in lenses, the problem of using the Fourier
method becomes even worse because of the necessity
of computing the gradients of the obtained deflection
map.

In the particular case of ophthalmic lenses the in-
teresting parameters are the spherical and the cylin-
drical powers that can be computed from the
gradients of the deflection components. As men-
tioned above, the frequency fields vx and vy of cost
function ~2! represent the derivatives of the deflection
o be processed. We rename frequency fields vx and

vy of Eq. ~3! as vxx and vxy when we compute the x
component of the deflection, and we rename vx and vy
when we compute the y component; that is, they rep-
resent the derivative of fx without explicit differen-
tiation. The same is true for the frequency fields vyx

Fig. 4. Contour maps ~scaled in dioptries! co
06 APPLIED OPTICS y Vol. 39, No. 4 y 1 February 2000
and vyy computed together with the y component of
the deflection ~fy!; that is

vxx 5
]fx

]x
, vxy 5

]fx

]y
, vyy 5

]fy

]y
, vyx 5

]fy

]x
.

(8)

From the fields vxx, vxy, vyy, and vyx we can compute
the cylindrical and the spherical powers as24

C 5 [(vxx 1 vyy)
2 2 4(vxxvyy 2 vxyvyx)]

1y2, (9)

S 5 1y2(vxx 1 vyy 2 C), (10)

respectively. Figures 4~a!, 4~b!, 4~c!, and 4~d! show
the contour maps ~scaled in dioptries! of vx, vxy, vyy,

onding to ~a! vxx, ~b! vxy, ~c! vyx, and ~d! vyy.
rresp
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and vyx, respectively. The employed value of the
regularization parameter l of Eq. ~2! was 5 in all
cases. The neighborhood size Nxy was 11 3 11 pix-
els. As mentioned above, the use of a more sophis-
ticated optimization algorithm implies a greater
processing time compared with the 2 min taken with
the gradient descent.17 In our case the processing
time was 20 min for each deflection in a AMD K6–2
330-MHz computer equipped with 128 Mbytes of
RAM. The contour maps of the cylindrical and the
spherical powers are shown in Figs. 5~a! and 5~b!,
respectively Figures 6~a! and 6~b! show the profiles
f the cylinder and the sphere along lines AB and CD

of Figs. 5~a! and 5~b!, respectively, together with the
measurement made with a commercial focimeter

Fig. 5. ~a! Cylindrical and ~b! spherical power computed with the
PT technique.
~Humphrey Lens Analyzer Model 360, 60.1 Dioptries
precision! along the same lines.

4. Conclusions

We have proposed a robust procedure based on the
RPT technique to demodulate squared-grating deflec-
tograms. The RPT has been improved with the ap-
plication of a more robust minimization algorithm
and a quality-map-based propagation algorithm that
takes into account the local reliability of the pixels in
the image. Owing to the good noise rejection char-
acteristics and the low sensitivity to the boundaries of
the RPT technique, we have improved the results,
compared with other techniques, to retrieve the
power maps of ophthalmic lenses; furthermore, as in
previously reported studies, we obtain the complete
deflection information from a single deflectogram,
thus avoiding the necessity of rotating the gratings.
The retrieved phase is already unwrapped and is
thus a good alternative for use in other applications of

Fig. 6. Profiles of ~a! cylindrical power along line AB in Fig. 6~a!
and ~b! spherical power along line CD in Fig. 6~b!, together with the
measurements made with a commercial focimeter along the same
lines.
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 507
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moiré deflectometry. The presented method may
also be useful in techniques for which phase and gra-
dient computations are required, for example, in ex-
perimental mechanics.
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Optik 98, 158–162 ~1995!.

9. H. Canabal, J. A. Quiroga, and E. Bernabeu, “Improved phase-
shifting method for automatic processing of moiré deflecto-
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Eng. 38, 974–982 ~1999!.

15. C. Roddier and F. Roddier, “Interferogram analysis using Fou-
rier transform techniques,” Appl. Opt. 26, 1668–1673 ~1987!.

16. J. Gu and F. Chen, “Fast Fourier transform, iteration, and
least-squares-fit demodulation image processing of single-
carrier fringe pattern,” J. Opt. Soc. Am. A 12, 2159–2164
~1995!.

17. M. Servı́n, J. L. Marroquı́n, and F. J. Cuevas, “Demodulation
of a single interferogram by use of a two-dimensional regular-
ized phase-tracking technique,” Appl. Opt. 36, 4540–4548
~1997!.

18. J. C. Wyant, “Double frequency grating lateral shear inter-
ferometer,” Appl. Opt. 12, 2057–2060 ~1973!.

19. J. M. Huntley and J. E. Field, “High resolution moiré photog-
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