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Abstract

Ž .Regularized filters RFs are used in profilometry for the measurement of three-dimensional object shapes. A linear
grating pattern projected onto an object is phase-modulated by the 3-D shape. Phase information of the pattern is obtained by

Ž .a demodulation process using RFs based on Bayesian estimation theory with Markov Random Fields MRFs as prior
models. The technique is fully processed in the space domain and applied in the 2-D case to provide a better separation of
the height information from noise. As shown herein, the technique is not so sensitive to the singularities in the pattern image
as with common filters used in the spatial synchronous detection. The technique and experimental results of real surface
profiles are presented. q 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of projected gratings for the measurement of
w xsurface shapes is a well-known technique 1 . This is an

easy and efficient way to characterize three-dimensional
information because the grating is phase-modulated ac-
cording to the topography of the object. We can record the
2-D pattern that carries the 3-D information of the object.
The remaining task is to retrieve the 3-D information from
the pattern by a demodulation process. Several techniques
for demodulation have been used: Fourier domain tech-

w x w xniques 1–5 , phase stepping 6 , spatial synchronous de-
w x w xtection 7 , electronic communication techniques 8,9 , and

w xtwo-frequency grating projection 10 . These techniques
require no fringe-order assignment and need no interpola-
tion between fringes, since every pixel in the image may
give height information.
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A method on the 1-D Fourier domain was proposed by
w x w xTakeda and Mutoh 1 and Takeda et al. 2 . This method

w xwas improved by Li et al. 3 by using a defocused
projected grating. The same method was used to get moiré

w xexpressions by Suganuma and Yoshizawa 4 . The analysis
of Takeda et al. was extended to a 2-D Fourier domain by

w xLin and Xian 5 to provide a better separation of height
w xinformation from noise. Tang and Hung 7 proposed the

synchronous method using an FIR filter.
Fourier methods need an image size of 2 n and a full

field pattern to work properly, this is a disadvantage, since
in most real situations, this is not possible because of the
finite size of the object; furthermore, the most common
convolution filters used in the spatial synchronous detec-
tion are so sensitive to their parameters, noise, and regions
with singularity neighborhoods in the pattern that may
require a more robust unwrapping process.

The problem of finding a phase function given the
Ž .observations i.e., the grating pattern may be considered

an ill-posed problem, since the task is to recover the 3-D
information from a 2-D fringe pattern image. This problem
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may be turned into a well-posed one if it is given some
prior information about the smoothness of the shape. The
Bayesian approach to model cost functionals is used to

Ž . w xconstruct regularized filters RFs 11,12 . This kind of
filters yield good performance in situations in which con-
volution filters fail, since they are relatively insensitive to
edge effects and may interpolate over regions of missing
data with well-defined behavior. The technique may also
be used in profilometry and applied in the two-dimensional
case to provide a better separation of the height informa-
tion from noise, when speckle-like structures and disconti-
nuities in the observed grating pattern are present.

2. Optical geometry for height measurement

The typical crossed-optical-axes geometry of the pro-
jection and recording system for the height measurement is
shown in Fig. 1. The optical axes of the projector and the
camera cross at point O on an imaginary plane R that
serves as a reference from which object height is mea-
sured. Ep and Ec denote the projection centers of the
projector and the CCD camera, respectively. L is an
imaginary plane on which the image of the grating is
formed. The distance between Ep and Ec is denoted by d,
and l is the distance between Ec and O. P is the period0

of the projected grating. The lines of the grating are
normal to the plane of the figure.

If the grating is defocusedly projected onto the object
w x3 , the image observed through the CCD camera will have
a quasi-sine distribution which can be written as

g x , y sa x , y qb x , y cos 2p f xqf x , y 1w xŽ . Ž . Ž . Ž . Ž .0

f x , y sf x , y qf x , y 2Ž . Ž . Ž . Ž .0 z

where f is the fundamental frequency of the observed0
Ž . Ž .grating image; a x, y and b x, y are the background and

Fig. 1. Optical geometry for height measurement.

Fig. 2. Typical synchronous demodulation scheme.

Ž .the amplitude modulation, respectively; f x, y is the0
Ž .phase modulation by diverging illumination in h x, y s0;

Ž .and f x, y is the phase shift due to the object’s heightz

distribution, thus

f x , y sf x , y yf x , y s2p f CD 3Ž . Ž . Ž . Ž .z 0 0

w xand the formula to obtain the height distribution is 1

l CD l f x , yŽ .0 0 z
z x , y s s . 4Ž . Ž .

CDyd f x , y y2p f dŽ .z 0

3. Phase measurement for retrieving the object shape

3.1. Spatial synchronous detection

As mentioned above, the fringe pattern may be repre-
Ž . Ž .sented by Eq. 1 where f x, y has the height information

which varies slowly compared with the phase carrier.
Using the spatial synchronous detection method, the phase

w xis calculated by 13

h x , y ) g x , y sin 2p f xw xŽ . Ž . Ž .0y1f x , y s tan yŽ .
h x , y ) g x , y cos 2p f xw xŽ . Ž . Ž .0

h x , y ) g x , yŽ . Ž .sy1s tan y 5Ž .
h x , y ) g x , yŽ . Ž .c

Ž .where the asterisk denotes convolution and h x, y a low-
pass filter which can be a single average window or those

w xFIR filters proposed by Tang and Hung 7 . A schematic
diagram of the synchronous demodulation is shown in Fig.
2.

3.2. Regularized filters

Filtering is a task that has been widely used in signal
processing and pattern analysis to smoothen or to isolate
the desired signal from noise. The task may also be
considered as an estimation problem in which we are
interested in reconstructing a smooth function f at the sites
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Žof a lattice L, given the observations g e.g., the fringe
.pattern where the noise n is present

g x sHf x qn x , xgS. 6Ž . Ž . Ž . Ž .

In the model, H is a noninvertible operator that repre-
sents some kind of degrading operation and S is a subset
of L where the observations are available. This problem is
considered ill-posed because the observation process g
does not determine the value of f in a unique and stable
way. The Bayesian approach to regularize this kind of
problem requires prior knowledge of f. The estimated

Žsignal may be obtained as the minimizer the maximum a
.posteriori estimator of an energy functional of the form

w x11,12

U f s F x ql U f 7Ž . Ž . Ž . Ž .Ý Ýf , g C
xgS C

Ž .The first term on the right side of Eq. 7 is related to
the fidelity between the estimated function and the obser-
vation; the second term is related to the smoothness of the

Ž .signal to be estimated i.e., the prior model . Parameter l

Ždepends on the noise model it may also be seen as a
parameter that controls the compromise between the de-

.gree of regularization and its closeness to the data .
w xAs Marroquin et al. 11 mentioned, the prior models

that satisfy the requirements in the stochastic route to
regularize this kind of problems are the Markov Random

Ž .Fields MRFs on finite lattices. MRFs are defined by a set
C of potential functions U that ranges over the cliquesC

associated with a given neighborhood system. The follow-
ing are the most important characteristics of MRFs.

Ž .1 The probabilistic dependences between the elements
of the field are local. This is important because we need to
model surfaces that are only piecewise smooth; in this
way, the reconstruction algorithms can be efficiently im-
plemented in parallel hardware.

Ž .2 The class of MRFs is rich for a wide variety of
qualitatively different behaviors to be modeled. In particu-
lar, if we assume that the noise is Gaussian, we choose f
that minimizes the squared error in the first term of the

Ž .functional 7 . When we assume that the f field has to be
globally smooth, the potential functions are usually chosen
as squares of discrete approximations to partial derivatives

Ž .which may be the second order thin-plate MRF model,

2w x w xU f x , y s f x , y yg x , yŽ . Ž . Ž .Ý
Ž .x , y gS

wql f xq1, y y2 f x , yŽ . Ž .Ýx
xgC x

2xqf xy1, y 8Ž . Ž .

Ž .Setting the gradient of Eq. 8 equal to zero, we get a
set of equations of the form

EU
ws f x , y yg x , y ql 6 f x , yŽ . Ž . Ž .x

E f x , yŽ .

y4 f xq1, y y4 f xy1, y q f xq2, yŽ . Ž . Ž .

xqf xy2, y s0. 9Ž . Ž .

The minimization operation may be considered as a
robust low-pass filter in the x direction acting on g that
interpolates over sites where information is missing. Tak-

Ž .ing the Fourier transform for the variable x of Eq. 9 , the
transfer function of the filter is obtained and expressed as

F v , yŽ .
H v , y sŽ .

G v , yŽ .

1
s .

w x1ql 6q2cos 2v , y y8cos v , yŽ . Ž .x

10Ž .

Ž .One can obtain the minimizer f x, y by performing the
steepest descent algorithm,

EU
kq1 kf x , y s f x , y ym , 11Ž . Ž . Ž .

E f x , yŽ .

where m is the step size. The filtering operation may be
Ž . Ž .performed in the same way for both g x, y and g x, y .s c

In an ideal case without noise, 1-D filtering could be
enough to separate the desired signal. However, there are
applications in which some speckle-like structures, discon-
tinuities and regions of missing data could cause phase

w xinconsistencies 5 . Therefore, a 2-D filtering is necessary.
To obtain a regularization functional for a low-pass

filter in the y direction, we can use a regularization term
that corresponds to an MRF in the y direction

2w x w xU f x , y s f x , y yg x , yŽ . Ž . Ž .Ý
Ž .x , y gS

wql f x , yq1 y2 f x , yŽ . Ž .Ýy
ygC y

2xqf x , yy1 , 12Ž . Ž .

which corresponds to the set of equations

EU
w x ws f x , y yg x , y ql 6 f x , yŽ . Ž . Ž .y

E f x , yŽ .

y4 f x , yq1 y4 f x , yy1 q f x , yq2Ž . Ž . Ž .

xqf x , yy2 s0 13Ž . Ž .
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Fig. 3. Simulated fringe pattern with uniformly distributed phase
noise ranging from yp r2 to p r2.

It should be noted that the filters are applied sequentially
over the fringe pattern being processed.

4. Noise sensitivity analysis

In this section, the noise sensitivity of RFs and convo-
lution filters is analyzed and compared. The size of the
window for the filters used in the direct method was

Fig. 4. Modulating phase signal of the fringe pattern shown in Fig.
3.

Fig. 5. Phase distribution obtained with the neighborhood average
filter.

selected according to a rectangular function that may be
w xrepresented by 13

x
h x , y s rect 14Ž . Ž .ž /p0

and its frequency response

sin p upŽ .0
H u , y s , 15Ž . Ž .

p up0

Ž .where u is the spatial frequency. Eq. 15 means that the
frequency responses of window filters have ringing effects
for high frequencies which may introduce errors in the
calculated phase.

Fig. 6. Phase distribution obtained with the RF.
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Fig. 7. Deformed grating by an object under test.

We have simulated a noisy wideband fringe pattern
with uniformly distributed phase noise ranging from ypr2
to pr2. This fringe pattern of 256=256 pixels with 8-bit
gray levels is shown in Fig. 3. The modulating phase
signal of Fig. 3 is shown wrapped in gray levels in Fig. 4.
The demodulated phase with a neighborhood average filter
is shown in Fig. 5. An immediate consequence is the
presence of phase inconsistencies in high-frequency re-
gions of the fringe pattern. Fig. 6 shows the phase recov-
ered by using the RF with l s200 and l s150. Thex y

normalized RMS errors of the window filter and the RF
were 0.04 and 0.017 rad, respectively.

5. Experimental results

A 100 linesrin Ronchi grating was used to be projected
by a conventional slide projector. The deformed grating

Fig. 8. Height distribution obtained using a rectangular average
window.

Fig. 9. Height distribution obtained using a Hamming window.

Žpattern was observed by a CCD video camera with a
.75-mm focal length lens and stored to be processed into a

133-MHz Pentium computer with a frame memory of
Ž .256=256 pixels 8-bit gray levels . The parameters in the

optical arrangement shown in Fig. 1 were ds30 cm and
l s125 cm. The period in the pattern image was p s5.440 0

pixels and the period of the grating projected onto the
object was ps2.2 mm.

Two different window filters were used in the spatial
synchronous detection to retrieve the height distribution of
an object. Fig. 7 shows the fringe pattern image of the
grating projected onto an object under test. The calculated

Ž . Žsize of the window according to Eq. 14 was Ms int 2 p0
.q1 s11. An easy sequential unwrapping technique used

w xby Takeda et al. 2 was applied in the experiments. Figs. 8
and 9 show the resulting unwrapped phase obtained using
the synchronous detection with an average rectangular
window and a Hamming window, respectively. As can be
seen, the filters have failed in some shadows and singulari-
ties of the pattern. Fig. 10 shows the results obtained using
the RF method with l s200 and l s150.x y

Fig. 10. Height distribution obtained using RFs with l s200 andx

l s150.y
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6. Conclusions

The use of RFs for the measurement of 3-D object
shapes has been proposed, without the need to cover the
whole digitized field and a power of two-image size as
normally required by Fourier methods. Furthermore, the
advantages of this method with reference to convolution
filters used in spatial synchronous detection are its good
noise rejection, relatively insensitivity to edge effects and
possibility of interpolation over singularity pixels with
well-defined behavior. In many cases, the patterns ob-
tained in profilometry have speckle-like structures, discon-
tinuities and data may be lost in the observation process;
this is a disadvantage when convolution filters are used.
Effectively, the convolution technique is a fast method, but
it may require a more robust unwrapping technique which
implies a slower process. The main disadvantage using this
method is the speed of the minimization process; however,

Žit may be improved using a more efficient algorithm e.g.,
.the conjugate gradient method .
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